Physical and sensorial quality of yellow caturra coffee after a carbonic maceration process

Authors

DOI:

https://doi.org/10.25186/.v18i.2134

Abstract

High prices for differentiated coffees with unique flavor profiles have spurred research into processing methods to standardize coffee production and improve quality. Fermentation is a biotechnological tool that may enhance the sensory profile of coffee and boost its overall quality. Carbonic maceration, which uses constant pressure CO2, can be used as a technique to differentiate coffees. In this study, the physical and sensorial qualities of Coffea arabica (yellow caturra variety) beans, following carbonic maceration, were assessed. The experiment was carried out during the harvest 2021/22 at La Joya farm. Data were analyzed for both the physical quality of the green coffee beans and the cup quality (sensorial) based on the fermentation process and duration using ANOVA, Friedman and U Mann-Whitney tests, with a significance level of alpha = 0.05. All analyses were conducted using SPSS software version 25. The final score was influenced by both carbonic maceration and the duration of fermentation, with scores for zero-day compositions being lower than those for 5, 10 and 15 days. A significant difference in primary defects, based on the duration of fermentation, was observed. In conclusion, carbonic maceration improved both coffee qualities at day 5 compared to day zero (natural process). However, the physical quality is negatively affected after 10 and 15 days, while the sensory quality increases respectively.
Key words: Fermentation; Temperatura; Pressure; Carbon dioxide; Time; Quality.

References

BABOVA, O.; OCCHIPINTI, A.; MAFFEI, M. E. Chemical partitioning and antioxidant capacity of green coffee (Coffea arabica and Coffea canephora) of different geographical origin. Phytochemistry, 123:33-39, 2016.

BATISTA, L. R.; CHALFOUN, S. M. Quality of coffee beans. In: SCHWAN, R. F.; FLEET, G. H. (ed). Cocoa and coffee fermentations. Boca Raton, FL, CRC Press, p. 477-508, 2014.

BEE, S. et al. The raw bean. In: ILLY, A.; VIANI, R. (Eds.). Espresso coffee, the science of quality. London, UK, Elsevier Academic Press, p. 87-178, 2005.

BRIOSCHI, D. et al. Microbial fermentation affects sensorial, chemical, and microbial profile of coffee under carbonic maceration. Food Chemistry, 342:128296, 2020.

CENTRO NACIONAL DE INVESTIGACIONES DE CAFÉ - CENICAFÉ. Aplicación de ciencia tecnología e innovación en el cultivo del café ajustado a las condiciones particulares del Huila. p. 162-187, 2019. Cenicafé.

ESCAMILLA, P. et al. El agroecosistema café orgánico en México. Manejo Integrado de Plagas y Agroecología, 76:5-16. 2005.

ETAIO, I. et al. Dynamic sensory description of Rioja Alavesa red wines made by different winemaking practices by using Temporal Dominance of Sensations. Journal of the Science of Food and Agriculture, 96(10):3492-3499, 2015.

FLANZY, C.; FLANZY, M.; BENARD, P. La vinification par macération carbonique. Francia. INRA Editions, 1995. 125p.

GIRAUDO, A. et al. Determination of the geographical origin of green coffee beans using NIR spectroscopy and multivariate data analysis. Food Control, 99:137-145, 2015.

GOMES, W. D. S. et al. Changes in the chemical and sensory profile of coffea canephora var. conilon promoted by carbonic maceration. Agronomy, 12(10):2265, 2022.

GONZÁLEZ-ARENZANA, L. et al. Influence of the carbonic maceration winemaking method on the physicochemical, colour, aromatic and microbiological features of tempranillo red wines. Food Chemistry, 319:126569, 2020.

HERNANDEZ-SOLABAC, J. A. et al. Migración internacional y manejo tecnológico del café en dos comunidades del centro de Veracruz. Tropical and subtropical agroecosystems, 14(3):807-818. 2011.

HERNÁNDEZ, M. et al. Aplicación de la secuenciación masiva y la bioinformática al diagnóstico microbiológico clínico. Revista Argentina de Microbiología, 52(2):150-161. 2020.

HUCH, M.; FRANZ, C. M. Coffee: Fermentation and microbiota. In: HOLZAPFEL, W. (Ed.). Advances in fermented foods and beverages. Cambridge: Woodhead Publishing. p. 501-513, 2015.

KRAMER, D. et al. Stress metabolism in green coffee beans (Coffea arabica L.): Expression of dehydrins and accumulation of GABA during drying. Plant & cell physiology, 51(4):546-553, 2010.

LEÓN, J. Botánica de los cultivos tropicales. San José, Costa Rica: Agroamerica, 2000. 522p.

LÓPEZ-GARCÍA, F. J. et al. Producción y calidad en variedades de café (Coffea arabica L.) en Veracruz, México. Revista fitotecnia mexicana, 39(3):297-304, 2016.

MUÑOZ-BELALCAZAR, J. A. et al. Manejo agronómico sobre el rendimiento y la calidad de café (Coffea arabica) variedad Castillo en Nariño, Colombia. Agronomía Mesoamericana, 32(3):750-762, 2021.

NIE, E. et al. How does temperature regulate anaerobic digestion? Renewable and Sustainable Energy Reviews, 150:111453, 2021.

PEREIRA, G. V. d. M. et al. Potential of lactic acid bacteria to improve the fermentation and quality of coffee during on-farm processing. International Journal of Food Science & Technology, 51:1689-1695, 2016.

PEREIRA, G. V. d. M. et al. Microbial ecology and starter culture technology in coffee processing. Critical Reviews in Food Science and Nutrition, 57(13):2775-2788, 2017.

PEREIRA, G. V. d. M. et al. Exploring the impacts of postharvest processing on the aroma formation of coffee beans: A review. Food Chemistry, 272:441-452, 2018.

POHLAN, H. A. J; JANSSENS M. J. J. Growth and production of coffee. In: VERHEYE, W.H. (Ed.). Soils, plant growth and crop production. Encyclopedia of Life Support System (EOLSS), v. 3, p.102-135, 2010.

PUERTA-QUINTERO, G. Factores, procesos y controles en la fermentación del café. Revista Cenicafé, 422(12):1-12, 2012.

SANTAMARÍA, P. et al. Difficulties associated with small-scale production of carbonic maceration wines. Fermentation, 8(1):27, 2022.

SARANDÓN, S. J. Agroecología: El camino hacia una agricultura sustentable. In: SARANDÓN, S. J. El marco conceptual de la agroecología y la agricultura sustentable. Ediciones Científicas Americanas, La Plata. p. 29-55, 2002.

SCHOLER, M. Coffee and wine. Editorial Matador. 2018. 336p.

SILVA, C. F. et al. Evaluation of a potential starter culture for enhance quality of coffee fermentation. World Journal Microbiology Biotechnology 29:235-247, 2013.

SILVA, C. F. Microbial activity during coffee fermentation. In: SCHWAN R. F.; FLEET, G. H. (Ed). Cocoa and coffee fermentations. Boca Raton, FL, CRC Press, p. 397-430, 2014.

SPECIALTY COFFEE ASSOCIATION OF AMERICAN - SCAA. Protocols. 2013. Available in: <http://www.scaa.org/PDF/resources/cupping-protocols.pdf>. Access in: December, 27, 2022.

SPECIALTY COFFEE ASSOCIATION - SCA. Arabica green coffee defect handbook. United States: SCA. 2018a. Available in: https://www.coffeestrategies.com/wp-content/uploads/2020/08/Green-Coffee-Defect-Handbook.pdf Access in: December, 27, 2022.

SPECIALTY COFFEE ASSOCIATION - SCA. Protocols and best practices. United States: SCA. 2018b.

SUÁREZ, J.; RODRÍGUEZ, E.; DURÁN, E. Efecto de las condiciones de cultivo, las características químicas del suelo y el manejo del grano en los atributos sensoriales del café (Coffea arabica L.) en taza. Acta agronómica, 64(4):342-348, 2015.

SUNARHARUM, W. et al. Physical and sensory quality of Java Arabica green coffee beans. IOP Conference Series: Earth and Environmental Science, 131:012018, 2018.

TESNIERE, C.; FLANZY, C. Carbonic maceration wines: Characteristics and winemaking process. In: Advances in food and nutrition research. Amsterdam, The Netherlands, Elsevier, v. 63, p. 1-15, 2011.

TOLEDO, V. M.; MOGUEL, P. Coffee and sustainability: The multiple values of traditional shaded coffee. Journal of Sustainable Agriculture, 36(3):353-377, 2012.

VAN DER VOSSEN, H.; BERTRAND, B.; CHARRIER, A. Next generation variety development for sustainable production of arabica coffee (Coffea arabica L.): A review. Euphytica 204:243-256, 2015.

WANG, C. et al. Potential of lactic acid bacteria to modulate coffee volatiles and effect of glucose supplementation: Fermentation of green coffee beans and impact of coffee roasting. Journal of the Science of Food and Agriculture. 99(1):409-420, 2019.

WANG, C. et al. Coffee flavour modification through controlled fermentation of green coffee beans by Saccharomyces cerevisiae and Pichia kluyveri: Part II. Mixed cultures with or without lactic acid bacteria. Food Research International, 136:109452, 2020.

WATERS, D.; MORONI, A.; ARENDT, E. Biochemistry, germination and microflora associated with Coffea arabica and Coffea canephora green coffee beans. Critical reviews in food science and nutrition, 57(2):259-274, 2015.

WATERS, D. M.; ARENDT, E. K.; MORONI, A. V. Overview on the mechanisms of coffee germination and fermentation and their significance for coffee and coffee beverage quality. Critical reviews in food science and nutrition, 57(2):259-274, 2017.

ZHANG, S. J. et al. Influence of various processing parameters on the microbial community dynamics, metabolomic profiles, and cup quality during wet coffee processing. Frontiers in Microbiology, 10:2621, 2019a.

ZHANG, S. J. et al. Following coffee production from cherries to cup: Microbiological and metabolomic analysis of wet processing of coffea arabica. Applied and Environmental Microbiology, 85(6):e02635-18, 2019b.

ZHANG, Y-S. et al. The effect of carbonic maceration during winemaking on the color, aroma and sensory properties of ‘Muscat Hamburg’ Wine. Molecules, 24(17):3120, 2019.

ZHANG, H. et al. Effects of initial temperature on microbial community succession rate and volatile flavors during baijiu fermentation process. Food Research International, 141:109887, 2021.

Downloads

Published

2023-12-15

How to Cite

HERNÁNDEZ-ALCÁNTARA, G. .; ALARCÓN-GUTIÉRREZ, E. .; RONZÓN-SOTO, S. .; GARCÍA-PÉREZ, J. A. . Physical and sensorial quality of yellow caturra coffee after a carbonic maceration process. Coffee Science - ISSN 1984-3909, [S. l.], v. 18, p. e182134, 2023. DOI: 10.25186/.v18i.2134. Disponível em: https://coffeescience.ufla.br/index.php/Coffeescience/article/view/2134. Acesso em: 20 sep. 2024.