Reduction of frost damage to coffee trees under agroforestry systems

Authors

  • Patricia Helena Santoro Instituto de Desenvolvimento Rural do Paraná IAPAR-EMATER/IDR-Paraná. Londrina, Paraná, Brasil. https://orcid.org/0000-0001-5376-3798
  • Heverly Morais Instituto de Desenvolvimento Rural do Paraná IAPAR-EMATER/IDR-Paraná. Londrina, Paraná, Brasil. https://orcid.org/0000-0002-5557-0057
  • Cintia Sorane Good Kitzberger Instituto de Desenvolvimento Rural do Paraná IAPAR-EMATER/IDR-Paraná. Londrina, Paraná, Brasil. https://orcid.org/0000-0001-7506-8761

DOI:

https://doi.org/10.25186/.v18i.2131

Abstract

Frosts affect coffee production in Brazil, with effects on commodity prices around the world. Agroforestry systems are strategies to reduce the effects of frost on coffee trees. To date, this study has evaluated the largest number of tree species in coffee tree AFSs in Brazil in the same experiment. The objective was to identify tree species that can protect coffee trees against frost damage in agroforestry systems. The study was conducted in Londrina, Paraná, Brazil. Each treatment consisted of coffee trees associated with one of the following tree species: Moringa oleifera, Croton floribundus, Trema micrantha, Gliricidia sepium, Senna macranthera, Heliocarpus popayanensis, and Mimosa scabrella, as well as a control of coffee trees in monoculture. The experimental area was affected by frost that damaged the coffee plants fifteen months after planting. Immediately thereafter, the dendrometric characteristics of the trees were evaluated. After 30 days, the defoliation and mortality of the trees were evaluated. The phytometric characteristics of the coffee trees were evaluated 12 months after the frosts. Six of the seven tree species were evaluated for the first time for their ability to protect coffee trees against frost. Even at an early stage of development, T. micrantha and H. popayanensis provided increased protection of coffee trees, reducing the defoliation and mortality of coffee trees. The main protective factor was the canopy area of these species, which provided a high rate of tree cover. The development of coffee trees after frosts was favoured by the shading of the species, with the exception of M. scabrella. The AFSs with T. micrantha and H. popayanensis constitute an alternative that allows the mitigation of frost damage to coffee plants in regions prone to this climatic stress, reducing defoliation and mortality.

Key words: Intercropping; multifunctional trees; microclimate; shaded coffee trees; diversified systems

References

AGUIAR-JUNIOR, A. L. et al. Ideótipo arbóreo para Sistemas Agroflorestais. Advances in Forestry Science, 8(1):1349-1362, 2021.

BLASER, W. J. et al. Climate-smart sustainable agriculture in low-to-intermediate shade agroforests. Nature Sustainability, 1(5):234-239, 2018.

BUNN, C. et al. A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Climatic Change, 129:89-101, 2015.

BURGER, H. Baumkrone und Zuwachs in zwei hiebsreifen Fichtenbeständen. Mitteilungen der Schweizerischen Anstalt für das Forstliche Versuchswesen, 21:147-176. 1939.

CAMARGO, A. P.; SALATI, E. Determinação da temperatura letal de folhagem de cafeeiro em noite de geada. Bragantia, 25(2):61-63, 1966.

CARAMORI, P. H. et al. Geada: Técnicas para proteção os cafezais. Londrina: IAPAR, 2000. 35p. (Circular 112).

CARVALHO, P. E. R. Capixingui: Croton floribundus. In: CARVALHO, P. E. R. Espécies arbóreas brasileiras. Informação Tecnológica. EMBRAPA, Brasília, v.1, p.334-341, 2003.

COLTRI, P. P. et al. Low levels of shade and climate change adaptation of Arabica coffee in southeastern Brazil. Heliyon, 5(2):e01263, 2019.

DAMATTA, F. M.; RAMALHO, J. D. C. Impacts of drought and temperature stress on coffee physiology and production: A review. Brazilian Journal of Plant Physiology, 18(1):55-81, 2006

EHRENBERGEROVÁ, L.; ŠENFELDR, M.; HABROVÁ, H. Impact of tree shading on the microclimate of a coffee plantation: A case study from the Peruvian Amazon. Bois et Forêts des Tropiques, 334(4):13-22, 2017.

FRANCO, C. M. Estrangulamento do caule do cafeeiro causado pelo frio. Bragantia, 19:515-521, 1960.

GOMES, L. C. et al. Agroforestry systems can mitigate the impacts of climate change on coffee production: A spatially explicit assessment in Brazil. 2020. Agriculture Ecosystems & Environment, 294:106858, 2020.

INSTITUTO DE DESENVOLVIMENTO RURAL DO PARANÁ - IAPAR-EMATER. Agrometeorologia e clima: Dados meteorológicos históricos e atuais. 2022. Available in: <https://www.idrparana.pr.gov.br/Pagina/Agrometeorologia-e-Clima>. Access in: August, 2, 2022.

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE - IPCC. Climate Change 2022: Impacts, Adaptation, and vulnerability. Available in:<https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii>. Access in: September 6, 2023.

KOH, I. et al. Climate risks to Brazilian coffee production. Environmental Research Letters, 15(10):104015, 2020.

KOTIKOT, S. M.; ONYWERE, S. M. Application of GIS and remote sensing techniques in frost risk mapping for mitigating agricultural losses in the Aberdare ecosystem, Kenya. Geocarto International, 30(1):104-121, 2015.

LEAL, A. C. et al. Arborização de cafeeiros com bracatinga (Mimosa scabrella Bentham). Floresta, 35(1):23-32, 2005.

LIU, C. A. et al. Introduction of a leguminous shrub to a rubber plantation changed the soil carbon and nitrogen fractions and ameliorated soil environments. Scientific Reports, 8:17324, 2018.

LORENZI, H. Árvores brasileiras: Manual de identificação e cultivo de plantas arbóreas nativas do Brasil. São Paulo: Plantarum, 8, 2020. 386p.

LORENZI, H.; MATOS, F. J. A. Plantas medicinais no Brasil: Nativas e exóticas. São Paulo: Plantarum, 3, 2021. 576p.

MATIELLO, J. B. et al. Cultura de café no Brasil: Manual de recomendações. Varginha: Fundação Procafé, 2020. 716p.

MORAIS, H. et al. Microclimatic characterization and productivity of coffee plants grown under shade of pigeonpea in Southern Brazil. Pesquisa Agropecuária Brasileira, 41(5):763-77, 2006.

MOREIRA, S. L. S. et al. Intercropping of coffee with the palm tree, macauba, can mitigate climate change effects. Agricultural Forest Meteorology, 256-257:379-390, 2018.

ORGANIZAÇÃO INTERNACIONAL DO CAFÉ - OIC. Relatório sobre o mercado de café – julho. 2021a. Available in: <http://consorciopesquisacafe.com.br/arquivos/consorcio/publicacoes_tecnicas/relatorio_oic_julho_2021.pdf> Access in: August, 8, 2022.

ORGANIZAÇÃO INTERNACIONAL DO CAFÉ – OIC. Relatório sobre o mercado de café - agosto 2021. 2021b. Available in: <http://consorciopesquisacafe.com.br/arquivos/consorcio/publicacoes_tecnicas/relatorio_oic_agosto_2021.pdf> Access in: August, 8, 2022.

ORGANIZAÇÃO INTERNACIONAL DO CAFÉ - OIC. Relatório sobre o mercado de café - dezembro 2021. 2021c. Available in: <http://www.consorciopesquisacafe.com.br/images/stories/noticias/2021/dezembro/relatorio_oic_dezembro_2021.pdf> Access in: August, 8, 2022.

OLIOSI, G. et al. Microclimate and development of Coffea canephora cv. Conilon under different shading levels promoted by Australian cedar (Toona ciliata M. Roem. var. Australis). Australian of Journal Crop Science, 10(4):528-538, 2016.

OVALLE-RIVERA, O. et al. Projected shifts in Coffea arabica suitability among major global producing regions due to climate change. Plos One, 10:e0124155, 2015.

PEREIRA, A. R.; CAMARGO, A. P.; CAMARGO, M. B. P. Agrometeorologia de cafezais no Brasil. Campinas: Instituto Agronômico, 2008. 127p.

QUEIROZ, D. A. H. O.; CARVALHO, S. M. Avaliação da qualidade das áreas verdes urbanas de Ponta Grossa, PR, Brasil. Terr@ Plural, 13(3):217-236, 2019.

ROLLAND, G. Spatial and seasonal variations of air temperature lapse rates in alpine regions. Journal of Climate, 16:1032-1046, 2003.

ROSENSTOCK, T. S. et al. Agroforestry with N2-fixing trees: Sustainable development’s friend or foe? Current Opinion in Environmental Sustainability, 6:15-21, 2014.

SANTOS, H. G. et al. Sistema brasileiro de classificação de solos. Brasília: EMBRAPA, 2018. 356p.

SMITH A.W. Introduction. In: SMITH A.W. Coffee: Chemistry. 1 vol. London, Elsevier 1985, 320p.

SOMARRIBA E. et al. Carbon stocks and cocoa yields in agroforestry systems of Central America. Agriculture Ecosystems & Environment, 173:46-57, 2013.

SOUSA, K. et al. The future of coffee and cocoa agroforestry in a warmer Mesoamerica. Scientific Reports, 9:8828, 2019.

VALENTINI, L. S. P. et al. Temperatura do ar em sistemas de produção de café arábica em monocultivo e arborizados com seringueira e coqueiro-anão na região de Mococa, SP. Bragantia, 69:1005-1010, 2010.

ZARO, G. C. et al. Carbon sequestration in an agroforestry system of coffee with rubber trees compared to open-grown coffee in southern Brazil. Agroforestry Systems, 94:799-809, 2020.

ZOMER, R. J. et al. Global tree cover and biomass carbon on agricultural land: The contribution of agroforestry to global and national carbon budgets. Scientific Reports, 6:29987, 2016.

Downloads

Published

2023-10-03

How to Cite

SANTORO, P. H.; MORAIS, H. .; KITZBERGER, C. S. G. Reduction of frost damage to coffee trees under agroforestry systems. Coffee Science - ISSN 1984-3909, [S. l.], v. 18, p. e182131, 2023. DOI: 10.25186/.v18i.2131. Disponível em: https://coffeescience.ufla.br/index.php/Coffeescience/article/view/2131. Acesso em: 12 apr. 2024.