Phosphorus fixation and its relationship with soils chemical properties of the coffee zone of Huila, Colombia




Adsorption is one of the critical processes in phosphorus (P) availability in plants. In the coffee crop (Coffea arabica), the highest dose of P is supplied in the vegetative phase, so its management is fundamental to guarantee the optimum growth of plants. The aim of this work was to determine the P fixation capacity and its relationship with the soil chemical properties of the Huila coffee zone, Colombian department, with the largest area planted with coffee. The adsorption isotherms were obtained by equilibrating the soil with 30mL of KH2PO4 solution dissolved in a 0.01M CaCl2.2H2O, containing concentrations of P between 50 and 4.200 mg kg-1. The P adsorption was measured for 60 soil samples collected from the five main cartographic units of the department: Campoalegre, El Recreo, La Cristalina, Saladoblanco, and San Simón. The data fitted to the linear and nonlinear Langmuir model forms. It was found that the soils of the region have a variable P fixation capacity, with values of q (adsorption at 0.2 mg L-1 in solution) between 8 and 1330 mg kg-1 and b (maximum adsorption capacity) from 117 to 3916 mg kg-1, without finding an association with the evaluated soil units. A correlation of q and b was found between Al3+, Al3+ saturation, pH, Ca2+ and Mg2+, and base saturation.

Key words: Langmuir isotherms; phosphorus adsorption; soil acidity; soil cartographic unit.


ALLEONI, L. R. F.; MELLO, J. W. V. de.; ROCHA, W. S. D. da. Eletroquímica, adsorção e troca iônica no solo. In: MELO, V. F.; ALLEONI, L. R. F. Química e mineralogia do solo - Parte 2: Aplicações. vol. 2. Viçosa: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo. P.69-123, 2009.

BANG, T. C. de. et al. The molecular–physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytologist, 229(5):2446-2469, 2021.

BONOMELLI, C. et al. Disponibilidad de fósforo en un andisol, con distintas fuentes y dosis de fósforo, en condiciones controladas. Ciencia e Investigación Agraria, 30(3):186-192, 2003.

BRAVO, I.; MONTOYA, J. C.; MENJIVAR, J. C. Retención y disponibilidad de fósforo asociado a la materia orgánica en un Typic Melanudands del departamento del Cauca, Colombia. Acta Agronómica, 62(3):261-267, 2013.

BRAVO, I.; MARQUINEZ, L.; POTOSI, S. Fraccionamiento del fósforo y correlación con la materia orgánica en dos suelos del departamento del Cauca. Suelos Ecuatoriales, 37(2):147-154, 2007.

BRAVO, G. E.; GÓMEZ, A. A. Capacidad de fijación de fósforo en seis unidades de suelos andosólicos de la zona cafetera colombiana. Revista Cenicafé, 25(1):19-29, 1974.

CENTRO NACIONAL DE INVESTIGACIONES DE CAFÉ - CENICAFÉ. Aplicación de ciencia tecnología e innovación en el cultivo del café ajustado a las condiciones particulares del Huila. Vol. 1 2015-2019. Cenicafé, 2019. Available in: <>. Access in: October 2, 2023.

DÍAZ-POVEDA, V. C.; SADEGHIAN, K. S. Adsorción de fósforo en suelos de la zona cafetera de Colombia. Revista Cenicafé, 69(2):7-16, 2017.

ESPINOSA, J. Fijación de fósforo en suelos derivados de ceniza volcánica. Informaciones agronómicas, 55:5-8, 2004.

ESRI. ArcGIS: Software de análisis y representación cartográfica digital integral y escalable. 10.2. Esri, 2013. Available in: <> Access in: October 9, 2023.

FEDERACIÓN NACIONAL DE CAFETEROS DE COLOMBIA - FNC. Estudio de zonificación y uso potencial del suelo en la zona cafetera del departamento del Huila. Bogotá, Colombia, 1985.

INSTITUTO GEOGRÁFICO AGUSTÍN CODAZZI - IGAC. Atlas cafetero de Colombia. Imprenta Nacional de Colombia, 2017.

FOX, R. L.; KAMPRATH, E. J. Phosphate sorption isotherms for evaluating the phosphate requirements of soils. Soil science society of America proceedings, 34:902-907, 1970.

GONZÁLEZ-OSORIO, H. et al. Screening for phosphate-solubilizing fungi from colombian andisols cultivated with coffee (Coffea arabica L.). Coffee Science, 15:e151666, 2020.

GUNJIGAKE, N.; WADA, K. Effects of phosphorus concentration and pH on phosphate retention by active aluminum and iron of Andosoils. Soil Science, 132:347-352, 1981.

HAVLIN, J. et al. Soil fertility and fertilizers, an introduction to nutrient management. (8th edition). Pearson Prentice Hall, 2017. 528p.

HADGU, F. et al. Study of phosphorus adsorption and its relationship with soil properties, analyzed with langmuir and freundlich models. Agriculture, Forestry and Fisheries, 3(1):40-51, 2014.

HIDAYAT, A. R. P. et al. Linear and nonlinear isotherm, kinetic and thermodynamic behavior of methyl orange adsorption using modulated Al2O3@ UiO-66 via acetic acid. Journal of Environmental Chemical Engineering, 9(6):106675, 2021.

JUO, A.; FOX, R. Phosphate sorption characteristics of some bench-mark soils of West Africa. Soil Science, 124(8):370-376, 1977.

KHANDELWAL, A. et al. Linear and nonlinear isotherm models and error analysis for the sorption of kresoxim-methyl. Bulletin of Environmental Contamination and Toxicology, 104(4):503-510, 2020.

LI, K. et al. Aluminum mobilization as influenced by soil organic matter during soil and mineral acidification: A constant pH study. Geoderma, 418:115853, 2022.

LINCE-SALAZAR, L. A.; SADEGHIAN, K. S. Taxonomía de suelos consideraciones para la zona cafetera de Colombia. Boletín Técnico Cenicafé, 45:1-31, 2021.

MAHDI, S. S. et al. Soil phosphorus fixation chemistry and role of phosphate solubilizing bacteria in enhancing its efficiency for sustainable cropping: A review. Journal of Pure and Applied Microbiology, 66(4):1905-1911, 2012.

MAATHUIS, F. J. Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, 12(3):250-258, 2009.

MBENE, K. et al. Phosphorus fixation and its relationship with physicochemical properties of soils on the Eastern flank of Mount Cameroon. African Journal of Agricultural Research, 12(36):2742-2753, 2017.

MOAZED, H. et al. Determining phosphorus adsorption isotherm in soil and its relation to soil characteristics. Journal of Food Agriculture & Environment, 8(2):1153-1157, 2010.

MUINDI, E. M. et al. Phosphorus adsorption and its relation with soil properties in acid soils of Western Kenya. International Journal of Plant & Soil Science, 4(3):203-211, 2015.

NAIR, V. D.; REDDY, R. K. Phosphorus sorption and desorption in wetland soils. In: DELAUNE, R. D. et al. Methods in biogeochemistry of wetlands. Volumen 10. Soil Science Society of America, p. 667-681, 2013.

NEATH, A. A.; CAVANAUGH, J. E. The bayesian information criterion: Background, derivation, and applications. Wiley Computational Statistics, 4(2):199-203, 2012.

PIERZYNSKI, G.; MADOWEEL, R.; THOMAS, J. Chemistry, cycling and potential movement of inorganic phosphorus in soils. Phosphorus: Agriculture and the environment, 46:53-54, 2005.

POSIT SOFTWARE. R STUDIO. 10.2. Boston, EE. UU.: Posit Software, 2009. Available in: <> Access in: October 9, 2023.

RAHMAN, M. M. et al. A statistical approach to determine optimal models for IUPAC-classified adsorption isotherms. Energies, 12(23):4565, 2019.

RAHMAN, M. M. et al. Statistical analysis of optimized isotherm model for maxsorb III/ethanol and silica gel/water pairs. Evergreen, 5(4):1-12, 2018.

RICHARDSON, A. E. et al. Plant mechanisms to optimise access to soil phosphorus. Crop and Pasture Science, 60:124-143, 2009.

SADEGHIAN, K. S.; OSPINA, P. C. Manejo nutricional de café durante la etapa de almácigo. Avances Técnicos Cenicafé. 2021. Available in: <>. Access in: October 3, 2023.

SADEGHIAN, K. S.; DÍAZ MARÍN, C. Corrección de la acidez del suelo: Alteraciones químicas del suelo. Revista Cenicafé, 71(1):7-20, 2020.

SADEGHIAN, K. S. et al. Fertilidad del suelo y manejo de la nutrición. In: CENTRO NACIONAL DE INVESTIGACIONES DE CAFÉ (Ed.). Aplicación de ciencia tecnología e innovación en el cultivo del café ajustado a las condiciones particulares del Huila: Vol. 1. 2015-2019. Cenicafé, Centro Nacional de Investigaciones de Café (Ed.), 2019.

SADEGHIAN, K. S. Nutrición de cafetales. In: CENTRO NACIONAL DE INVESTIGACIONES DE CAFÉ (Ed.). Manual del cafetero colombiano: Investigación y tecnología para la sostenibilidad de la caficultura. V. 2. Cenicafé, 2013.

SINGH, A. K. Chapter 8 - Nanoparticle Ecotoxicology. In: SINGH, A. K. Engineered Nanoparticles Structure. Properties and Mechanisms of Toxicity. Elsevier Inc, p. 343-450, 2016.

STATGRAPHICS. Statgraphics. 15.2.14. Madrid, España: Statgraphics Inc, 2007. Available in: <> Access in: October 9, 2023.

SYSTAT SOFTWARE INC. SigmaPlot. 10.2. California, EE. UU.: Systat Software Inc, 2006. Available in: <> Access in: October 9, 2023.

TAIZ, L. et al. Plant physiology and development. Sixth edition. Sinauer Associates. Inc., Massachusetts. USA. 2015. 580p.

VILLAREAL-NÚÑEZ, J. et al. Formas de fósforo en suelos de panamá. Ciência Agrícola, 26:97-111, 2017.

VISHALI, S.; MULLAI, P. Analysis of two-parameter and three-parameter isotherms by nonlinear regression for the treatment of textile effluent using immobilized Trametes versicolor: comparison of various error functions. Desalination and Water Treatment, 57(56):27061-27072, 2016.

YUSRAN, F. H. The relationship between phosphate adsorption and soil organic carbon from organic matter addition. Journal of Tropical Soils, 15(1):1-10, 2010.

ZHAO, Y.; LI, Y.; YANG, F. Critical review on soil phosphorus migration and transformation under freezing-thawing cycles and typical regulatory measurements. Science of the Total Environment, 751:141614, 2021.




How to Cite

POVEDA, V. C. D. .; SADEGHIAN, S. Phosphorus fixation and its relationship with soils chemical properties of the coffee zone of Huila, Colombia. Coffee Science - ISSN 1984-3909, [S. l.], v. 18, p. e182122, 2023. DOI: 10.25186/.v18i.2122. Disponível em: Acesso em: 12 apr. 2024.