Biocontrol of root-knot nematode Meloidogyne incognita in arabica coffee seedling by using fortified bacterial consortium
DOI:
https://doi.org/10.25186/.v17i.2063Abstract
The damage caused by the southern root-knot nematode (Meloidogyne incognita) in coffee plants has been reported in various countries, including Indonesia. The measures to control the nematodes on coffee seedlings and fields depend on synthetic nematicides. Addressing this issue requires not only a more environmentally friendly and cheaper technology but also equal effectiveness comparable to synthetic nematicides. This study aimed to test the effectiveness of fortified bacterial consortium (FBC) involving a combination of liquid organic fertilizer (LOF), botanical pesticide, and a bacterial consortium to control M. incognita infection in Coffea arabica seedlings. The treatments in this study consisted of control, synthetic nematicide with the
active ingredient fluopyram, and various FBC concentrations ranging from 20%, 40%, 60%, 80%, and 100%. The results demonstrated that the application of 60% to 100% FBC increased plant growth. The most effective and efficient treatment for increasing plant growth was the application of 60% FBC. When compared with control plants, 60% FBC treatment resulted in 6.8% longer root, 9.5% higher plant, 5.3% heavier plant fresh weight, and 4.8% heavier root fresh weight. We also found that the application of 60% to 100% FBC increased the amount of chlorophyll in leaves. FBC application also reduced the number of nematodes in the soil up to 60.6%, the number of galls up to 286.4%, and the severity of root damage up to 118.2%. This study indicates that the application of 60% FBC is the most effective and efficient in controlling M. incognita and stimulating the growth of C. arabica seedlings.
Key words: Bacillus; pseudomonas; endophyte; rhizobacteria; fluopyram.
References
AKILA, R. et al. Combined application of botanical formulations and biocontrol agents for the management of Fusarium oxysporum f. sp. cubense (Foc) causing fusarium wilt in banana. Biological Control, 57(3):175-183, 2011.
ALBUQUERQUE, E. V. S. et al. Resistance to Meloidogyne incognita expresses a hypersensitive-like response in Coffea Arabica. European Journal of Plant Pathology, 127(3):365-373, 2010.
AMUJOYEGBE, B.; OPABODE, J.; OLAYINKA, A. Effect of organic and inorganic fertilizer on yield and chlorophyll content of maize (Zea mays L.) and sorghum Sorghum bicolour (L.) Moench). African Journal of Biotechnology, 6(16):1869-1873, 2007.
ANZUETO, F. et al. Resistance to Meloidogyne incognita in Ethiopian Coffea Arabica accessions. Euphytica, 118(1):1-8, 2001.
ASYIAH, I. N. et al. Consortium of endophytic bacteria and rhizobacteria effectively suppresses the population of Pratylenchus coffeae and promotes the growth of Robusta Coffee. Biodiversitas Journal of Biological Diversity, 21(10):4702-4708, 2020.
ASYIAH, I. N. et al. Cost-effective bacteria-based bionematicide formula to control the root-knot nematode Meloidogyne spp. on tomato plants. Biodiversitas Journal of Biological Diversity, 22(6):3256-3264, 2021.
ASYIAH, I. N. et al. The endophytic bacteria isolation as biological control agent of Pratylenchus coffeae. Asian Journal of Microbioliology, Biotechnology & Environmental Sciience, 20(1):165-171, 2018.
ASYIAH, I. N. et al. Population of pratylenchus coffeae (Z.) and growth of Arabica Coffee seedling inoculated by Pseudomonas diminuta L. and bacillus subtilis (C.). Pelita Perkebunan, 31(1):30-40, 2015.
AZAD, A. K. et al. Eco-friendly pest control in cucumber (Cucumis sativa L.) field with botanical pesticides. Natural Resources, 4(5):404-409, 2013.
BARBOSA, D. et al. Field estimates of coffee yield losses and damage threshold by Meloidogyne exigua. Nematologia Brasileira, 28(1):49-54, 2004.
BARBOSA, D. H.; SOUZA, R. M.; VIEIRA, H. D. Field assessment of coffee (Coffea arabica L.) cultivars in Meloidogyne exigua-infested or–free fields in Rio de Janeiro State, Brazil. Crop Protection, 29(2):175-177, 2010.
BARGAZ, A. et al. Benefits of phosphate solubilizing bacteria on belowground crop performance for improved crop acquisition of phosphorus. Microbiological Research, 252, 2021.
BARROS, A. F. et al. Meloidogyne paranaensis attacking coffee trees in Espirito Santo State, Brazil. Australasian Plant Disease Notes, 6(1):43-45, 2011.
BARROS, A. F. et al. Root-knot nematodes, a growing problem for conilon coffee in Espírito Santo State, Brazil. Crop Protection, 55:74-79, 2014.
BASU, A. et al. Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability, 13(3):1-20, 2021.
BELL, N.; WATSON, R. Optimising the whitehead and hemming tray method to extract plant parasitic and other nematodes from two soils under pasture. Nematology, 3(2):179-185, 2001.
BENEDUZI, A.; AMBROSINI, A.; PASSAGLIA, L. M. Plant growth-promoting rhizobacteria (PGPR): Their potential as antagonists and biocontrol agents. Genetics and Molecular Biology, 35:1044-1051, 2012.
BILLAH, M. et al. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal, 36(10):904-916, 2019.
BUURMAN, P.; VAN LAGEN, B.; VELTHORST, E. Manual for soil and water analysis. Backhuys Publishers Leiden, The Netherlands, 1996. 316p.
CROW, W. T.; HABTEWELD, A.; BEAN, T. Mist chamber extraction for improved diagnosis of Meloidogyne spp. from golf course bermudagrass. Journal of Nematology, 52(1):1-12, 2020.
DORJEY, S.; DOLKAR, D.; SHARMA, R. Plant growth promoting rhizobacteria Pseudomonas: A review. International Journal of Current Microbiology Applied Sciences, 6(7):1335-1344, 2017.
ELLING, A. A. Major emerging problems with minor Meloidogyne species. Phytopathology, 103(11):1092-1102, 2013.
FABROWSKA, J. et al. Isolation of chlorophylls and carotenoids from freshwater algae using different extraction methods. Phycological Research, 66(1):52-57, 2018.
GARCÍA MOLANO, J. F.; PARRA ALBA, J. D.; PÁEZ GUEVARA, L. A. Characterization of composted organic solid fertilizer and fermented liquid fertilizer produced from the urban organic solid waste in Paipa, Boyacá, Colombia. International Journal of Recycling Organic Waste In Agriculture, 10(4):379-395, 2021.
GOULART, R. R. et al. Meloidogyne paranaensis and M. exigua alter coffee physiology. Nematology, 21(5):459-467, 2019.
GUTIÉRREZ‐MAÑERO, F. J. et al. The plant‐growth‐promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, 111(2):206-211, 2001.
HALIMAH, H.; SUPRAMANA, S.; SUASTIKA, G. Identifikasi spesies Meloidogyne pada wortel berdasarkan sikuen nukleotida. Jurnal Fitopatologi Indonesia, 9(1):1-6, 2013.
HALIMAH, D.; MUNIF, A.; GIYANTO, G. Effectiveness of endophytic bacterial consortium of coffee plant on mortality of Pratylenchus coffeae in vitro. Pelita Perkebunan, 31(3):175-185, 2015.
HERNÁNDEZ-CARLOS, B.; GAMBOA-ANGULO, M. Insecticidal and nematicidal contributions of Mexican flora in the search for safer biopesticides. Molecules, 24(5):897-921, 2019.
HOESAIN, M. et al. In vitro studies on Bacillus sp. and Pseudomonas sp. compatibility with botanical pesticide. IOP Conference Series: Earth and Environmental Science, 012069, 2021.
IBRAHIM, H. W.; ZAILANI, S. A review on the competitiveness of global supply chain in a coffee industry in Indonesia. International Business Management, 4(3):105-115, 2010.
JAVED, N. et al. Systemic and persistent effect of neem (Azadirachta indica) formulations against root-knot nematodes, Meloidogyne javanica and their storage life. Crop Protection, 26(7):911-916, 2007.
JHA, P. et al. Predicting total organic carbon content of soils from Walkley and Black analysis. Communications in Soil Science and Plant Analysis, 45(6):713-725, 2014.
JUNAIDI, Y.; WINDARI, W.; AINI, F. N. Nutrient content of super liquid fertilizer (SLF) from dairy sludge waste and the potential as a biopesticide. International Journal of Recycling Organic Waste in Agriculture, 12:155-164, 2022.
KHAN, A.; WILLIAMS, K. L.; NEVALAINEN, H. K. M. Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biological Control, 31(3):346-352, 2004.
KHAN, F. et al. Evaluation of the nematicidal potential of some botanicals against root-knot nematode, Meloidogyne incognita infected carrot: In vitro and greenhouse study. Current Plant Biology, 20:100115, 2019.
KLOEPPER, J. W.; RYU, C. M. Bacterial endophytes as elicitors of induced systemic resistance. Microbial Root Endophytes, 9:33-52, 2006.
KURNIAWATI, F.; SUPRAMANA, S.; ADNAN, A. M. Spesies Meloidogyne penyebab puru akar pada seledri di Pacet, Cianjur, Jawa Barat. Jurnal Fitopatologi Indonesia, 13(1):26-30, 2017.
LENGAI, G. W. M.; MUTHOMI, J. W.; MBEGA, E. R. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Scientific African, 7:e00239, 2020.
LODEWYCKX, C. et al. Endophytic bacteria and their potential applications. Critical Reviews in Plant Sciences, 21(6):583-606, 2002.
MAHESHWARI, R.; BHUTANI, N.; SUNEJA, P. Screening and characterization of siderophore producing endophytic bacteria from Cicer arietinum and Pisum sativum plants. Journal of Applied Biology and Biotechnology, 7(5):7-4, 2019.
MORIDI, A. et al. Influence of PGPR-enriched liquid organic fertilizers on the growth and nutrients uptake of maize under drought condition in calcareous soil. Journal of Plant Nutrition, 42(20):2745-2756, 2019.
MUNIF, A.; SUKARNO, B. P. W.; GUSMAINI, G. Effectivity of single isolates, mixtures, and consortium of endophytic bacteria against Fusarium solani and Meloidogyne spp. in vitro. Jurnal Fitopatologi Indonesia, 17(6):233-242, 2021.
MUNIF, A. et al. Endophytic bacterial consortium originated from forestry plant roots and their nematicidal activity against Meloidogyne incognita infestation in greenhouse. ACTA Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis, 67(5):1171-1182, 2019.
MUNIZ, M. d. F. S. et al. Reaction of coffee genotypes to different populations of Meloidogyne spp.: detection of a naturally virulent M. exigua population. Tropical Plant Pathology, 34(6):370-378, 2009.
NAHM, K. H. Evaluation of the nitrogen content in poultry manure. World's Poultry Science Journal, 59(1):77-88, 2003.
NURHAYATI, N.; NURAHMI, E.; MARZIAH, A. Respon pertumbuhan bibit kopi Arabika (Coffea arabica L.) varietas ateng keumala akibat pemberian pupuk organik cair buah-buahan dan dosis pupuk fosfor. Jurnal Ilmiah Mahasiswa Pertanian, 4(4):11-20, 2019.
ORMEÑO DIAZ, M. A.; OVALLE SILVA, A. I..; REY, J. C. Evaluation of the effect of liquid organic fertilizers on the growth of seedlings of coffee (Coffea arabica L.). Revista de la Facultad de Agronomía, Universidad del Zulia, 35(4):387-407, 2018.
PANPATTE, D. G. et al. Fortified bacterial consortium - A novel approach to control root knot nematode in cucumber (Cucumis sativum). Biological Control, 155:104528, 2021.
PIETERSE, C. M. J. et al. Induced systemic resistance by beneficial microbes. Annual review of phytopathology, 52:347-375, 2014.
RHODES, M. W.; KATOR, H. Survival of escherichia coli and salmonella spp. in estuarine environments. Applied and Environmental Microbiology, 54(12):2902-2907, 1988.
SARKAR, S.; SINGH, R.P.; BHATTACHARYA, G. Exploring the role of azadirachta indica (neem) and its active compounds in the regulation of biological pathways: An update on molecular approach. 3 Biotech, 11(4):1-12, 2021.
SILVA, S. A. et al. Assessment of the most suitable nematode inoculum density and plant growth period to screen coffee genotypes for their reaction to Meloidogyne incognita. Nematology, 22(4):373-380, 2020.
SOLIMAN, G. M. et al. In vitro evaluation of some isolated bacteria against the plant parasite nematode Meloidogyne incognita. Bulletin of The National Research Centre, 43(1):1-7, 2019.
SUBEDI, S.; THAPA, B.; SHRESTHA, J. Root-knot nematode (Meloidogyne incognita) and its management: A review. Journal of Agriculture and Natural Resources, 3(2):21-31, 2020.
TAHER, M.; SUPRAMANA; SUASTIKA, G. Identifikasi Meloidogyne penyebab penyakit umbi bercabang pada wortel di Dataran Tinggi Dieng. Jurnal Fitopatologi Indonesia, 8(1):16-21, 2012.
TIAN, B.; YANG, J.; ZHANG, K. Q. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. FEMS Microbiology Ecology, 61(2):197-213, 2007.
TRINH, P. Q. et al. Plant-parasitic nematodes associated with coffee in Vietnam. Russian Journal of Nematology, 17(1):73-82, 2009.
YUAN, J. et al. Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-enriched bio-organic fertilizer suppressed Fusarium wilt and promoted the growth of banana plants. Journal of Agricultural and Food Chemistry, 61(16):3774-3780, 2013.
ZECK, W. M. Ein bonitierungsschema zur feldauswertung von wurzelgallenbefall. Pflanzenschutz–Nachrichten Bayer, 24(1):144-147, 1971.
ZINGER, F. D. et al. Quantification of damage and yield losses and management of root-knot nematodes in conilon coffee. Revista Caatinga, 34(2):287-297, 2021.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Coffee Science - ISSN 1984-3909Os direitos autorais dos artigos publicados nesta revista pertencem aos autores, com os primeiros direitos de publicação pertencentes à revista. Como os artigos aparecem nesta revista com acesso aberto, eles podem ser usados livremente, com as devidas atribuições, em aplicativos educacionais e não comerciais.