Initial growth of coffee plants associated with the use of kaolinite and adjuvant

Authors

  • Bruna Penha Costa Universidade Estadual do Oeste do Paraná/UNIOESTE, Centro de Ciências Agrárias, Marechal Cândido Rondon, PR, Brasil. https://orcid.org/0000-0001-8916-2310
  • Cláudio Yuji Tsutsumi Universidade Estadual do Oeste do Paraná/UNIOESTE, Centro de Ciências Agrárias, Marechal Cândido Rondon, PR, Brasil. https://orcid.org/0000-0003-2455-7279
  • Carlos Augusto Rocha de Moraes Rego Universidade Federal do Maranhão/UFMA, Centro de Ciências de Chapadinha, Chapadinha, MA, Brasil. https://orcid.org/0000-0003-4414-1449

DOI:

https://doi.org/10.25186/.v18i.2046

Abstract

Abiotic stresses cause significant damage to coffee plants’ development. Seeking solutions to mitigate them, studies about antiperspirant action have been intensified, for instance, kaolinite, which produces a film of particles with reflexive properties. In this context, this experiment aims to evaluate the effects of applying kaolinite doses in different colors with or without the addition of adjuvant on biometric variables during coffee plants’ initial growth. The randomized block design was used with three repetitions in an incomplete factorial scheme with an additional treatment, resulting in 11 treatments and 33 plots. The first factor comprised three kaolinite doses (20, 40, and 60 g); the second factor had two kaolinite colors (white and cream), and the third factor was the absence or presence of an adjuvant, also including an additional treatment (control). The plot consisted of four seedlings of the cultivar IPR 100. It was observed that the plant height (PH), number of plagiotropic branches (NPB), leaf area index (LAI), leaf dry matter (LDM), shoot dry matter (SHDM), root dry matter (RDM), and total dry matter (TDM) presented significant differences. Regarding PH, the dose of 40 g of cream kaolinite increased 7.07 cm more than the control. For LAI, the dose of 40 g with adjuvant had a 97.65 increase. For LDM and TDM, the dose of 40 g of white kaolinite with adjuvant presented respective increases of 5.2 and 12.78 g. The application of white kaolinite with adjuvant increased SHDM by 4.52 g. For RDM, the dose of 40 g of white kaolinite with adjuvant increased 6.51 g more than the control. The dose of 40 g of white kaolinite with adjuvant had a higher effect on the biometric variables.

Key words: Antiperspirant; biomass; Coffea arabica L.; thermal stress; particles’ film.

References

ABOU-KHALED, A.; HAGAN, R. M.; DAVENPORT, D. C. Effects of kaolinite as a reflective antitranspirant on leaf temperature, transpiration, photosynthesis, and water‐use efficiency. Water Resources Research, 6(2):280-289, 1970.

AHMED, F. F. et al. Protecting red roomy grapevines growing under minia region conditions from sunburn damage. Stem Cell, 4(2):15-20, 2013.

ALMEIDA, S. M. Z. et al. Alterações morfológicas e alocação de biomassa em plantas jovens de espécies florestais sob diferentes condições de sombreamento. Ciência Rural, 35(1):62-68, 2005.

ALVARES, C. A. et al. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6):711-728, 2014.

BADRAN, A. A.; DWAYKAT, B. F. Prediction of solar radiation for the major climates of jordan: A regression model. Journal of Ecological Engineering, 19(2):24-38, 2018.

BALIZA, D. P. et al. Trocas gasosas e características estruturais adaptativas de cafeeiros cultivados em diferentes níveis de radiação. Coffee Science, 7(3):250-258, 2012.

BICHO, N. et al. O café: Origens, produção, processamento e definição de qualidade. Lisboa: Editora Escolar, 2011. 176p.

BOARI, F. et al. Particle film technology: A supplemental tool to save water. Agricultural Water Management, 147(1):154-162, 2015.

BRITO, C. et al. Kaolin, an emerging tool to alleviate the effects of abiotic stresses on crop performance. Scientia Horticulturae, 250(5):310-316, 2019.

CAMARGO, A. P. Arborização de cafezais. O Agronômico, 59(1):25-27, 2007.

CAMPOSTRINI, E.; REIS, F. O.; SOUZA, M. A. Processed-kaolin particle film on papaya leaves: A study related to gas exchange, leaf temperature and light distribution in canopy. Acta Horticulturae, 864(864):195-200, 2010.

CHARBONNIER, F. et al. Increased light-use efficiency sustains net primary productivity of shaded coffee plants in agroforestry system. Plant Cell and Environment, 40(8):1592-1608, 2017.

COBRA, M. M. et al. Photoprotector in arabica coffee seedlings. Revista Ciência Agrícola, 18(2):1-6, 2020.

COLODETTI, T. V. et al. Canopy architecture of arabica coffee conducted with different numbers of orthotropic branches. Revista Ceres, 65(5):415-423, 2018.

COMPANHIA NACIONAL DE ABASTECIMENTO - CONAB. Acompanhamento da safra brasileira. Café, v. 8 – Safra 2021, n.1 - Terceiro Levantamento, Brasília, p. 1-59, 2021. Available in: <https://www.conab.gov.br/info-agro/safras/cafe/boletim-da-safra-de-cafe.> Access in: December 08, 2021.

CONDE, A. et al. Kaolin particle film application stimulates photoassimilate synthesis and modifies the primary metabolome of grape leaves. Journal of Plant Physiology, 223(4):47-56, 2018.

DIAS, M. C.; BRUGGEMANN, W. Limitations of photosynthesis in Phaseolus vulgaris under drought stress: Gas exchage, chlorophyll fluorescence and Calvin cycle enzymes. Photosynthetica, 48(1):96-97, 2010.

DINIS, L. T. et al. Kaolin exogenous application boosts antioxidant capacity and phenolic content in berries and leaves of grapevine under summer stress. Journal of Plant Physiology, 191(2):45-53, 2016.

FAVARIN, J. L. et al. Equações para a estimativa do índice de área foliar do cafeeiro. Pesquisa Agropecuária Brasileira, 37(6):769-773, 2002.

FREITAS, Z. M. T. S. et al. Avaliação de caracteres quantitativos relacionados com o crescimento vegetativo entre cultivares de café arábica de porte baixo. Bragantia, 66(2):267-275, 2007.

FURTADO, B. N. et al. A importância do ácido salicílico na mitigação do déficit hídrico em plantas de cafeeiro. Revista Agri-Environmental Sciences, 6(11):1-12, 2020.

GERLACH, G. A. et al. Análise econômica da produção de feijão em função de doses de nitrogênio e coberturas vegetais. Pesquisa Agropecuária Tropical, 43(1):42-49, 2013.

GLENN, D. M. Particle film mechanisms of action that reduce the effect of environmental stress in ‘empire’ apple. Journal of the American Society for Horticultural Science, 134(3):314-321, 2009.

GLENN, D. M. et al. Impact of kaolin particle film and water deficit on wine grape water use efficiency and plant water relations. Hortscience, 45(8):1178-1187, 2010.

GLENN, D. M. The mechanisms of plant stress mitigation by kaolin-based particle films and applications in horticultural and agricultural crops. HortScience, 47(6):710-711, 2012.

GLENN, D. M.; PUTERKA, G. J. Particle films: A new technology for agriculture. Horticultural Reviews, 31(6):1-44, 2005.

LIANG, X. G. et al. Differential ear growth of two maize varieties to shading in the field environment: Effects on wholet carbon allocation and sugar starvation response. Journal of Plant Physiology, 251(8):153-194, 2020.

LUCCHESI, A. A. Utilização prática da analise de crescimento vegetal. Anais Da Escola Superior De Agricultura Luiz De Queiroz- (scientia agricola), 41(1):181-202, 1984.

MATIELLO, J. B. et al. Cultura de café no Brasil: Manual de recomendações. Varginha: Procafé, 2010. 387p.

NATEGHI, M.; PAKNEJAD, F.; MOAREFI, M. Effect of concentrations and time of kaolin spraying on wheat aphid. Journal of Biological Environmental Science, 7(21):163‑168, 2013.

NITSCHE, P. R., et al. Atlas climático do estado do paraná. Londrina, PR: Instituto Agronômico do Paraná - IAPAR. 2019. 210p.

OTTO, M. S. G. et al. Fotossíntese, condutância estomática e produtividade de clones de Eucalyptus sob diferentes condições edafoclimáticas. Revista Árvore, 37(3):431-439, 2013.

RAMOS, L. Efeito da adição do gesso agrícola em substrato no desenvolvimento de mudas de cafeeiro. Revista Agrogeoambiental, 2(3):97-103, 2010.

RIBEIRO, A. F. et al. Content of photosynthetic pigments and leaf gas exchanges of young coffee plants under light restriction and treated with paclobutrazol. Journal of Experimental Agriculture International, 32(6):1-13, 2019.

RICCI, M. D. S. F. et al. Vegetative and productive aspects of organically grown coffee cultivars undershaded and unshaded systems. Scientia Agricola, 68(4):424-430, 2011.

RICCI, M. D. S. F.; COCHETO JUNIOR, D. G.; ALMEIDA, F. F. D. Condições microclimáticas, fenologia e morfologia externa de cafeeiros em sistemas arborizados e a pleno sol. Coffee Science, 8(3):379-388, 2013.

RODRIGUES, V. G. S. Avaliação do desenvolvimento vegetativo de cafeeiros arborizados e a pleno sol. Porto Velho: Embrapa Rondônia, 2009. 4p. (Circular Técnica nº 112).

RODRÍGUEZ-LÓPEZ, N. F. et al. Morphological and physiological acclimations of coffee seedlings to growth over a range of fixed or changing light supplies. Environmental and Experimental Botany, 102(6):1-10, 2014.

RONCHI, C. P. et al. Root morphology of Arabica coffee cultivars subjected to different spatial arrangements. Pesquisa Agropecuária Brasileira, 50(3):187-195, 2015.

RONCHI, C. P.; DAMATTA, F. M. Aspectos fisiológicos do café conilon. In: FERRÃO, R. et al. (Eds). Café conilon. Vitória: Incaper, 2007, 205p.

ROSATI, A. et al. Physiological effects of kaolin applications in well-irrigated and water-stressed walnut and almond trees. Annals of Botany, 98(1):267-275, 2006.

SANTOS, D. P. et al. Effect of applying a calcined kaolin-based particle film on the photosynthetic capacity and growth of young eucalyptus plants. Journal of Forestry Research, 32(4):2473-2484, 2021.

SANTOS, H. G. et al. Sistema brasileiro de classificação de solos. 5 ed. Brasília: Embrapa, 2018. 356p.

SAS INSTITUTE INC. SAS university edition: Instalation guide. Cary; SAS Institute, 2014. Available in: <https://www.sas.com/pt_br/home.html>. Access in: February 03, 2023.

SOCIEDADE BRASILEIRA DE CIÊNCIA DO SOLO - SBCS. Manual de Adubação e Calagem para o Estado do Paraná. Curitiba: SBCS/NEPAR, 2017. 482p.

SERA, T.; SERA, G. H. IPR 100 - Rustic dwarf Arabica coffee cultivar with resistance to nematodes Meloidogyne paranaensis and M. incognita. Crop Breeding and Applied Biotechnology, 17(2):75-179, 2017.

SILVA, A. L. A. L.; SILVA, C. A. D. Efficient and economical kaolin concentration for cotton protection against boll weevil. Pesquisa Agropecuária Brasileira, 50(9):763-768, 2015.

SILVA, C. A. D. de.; RAMALHO, F. S. de. Pragas: Sempre via manejo integrado. A Granja, (770):50-53, 2013.

SILVA, E. A. et al. Seasonal changes in vegetative growth and photosynthesis of Arabica coffee trees. Field Crops Research, 89(2):349-357, 2004.

STEIMAN, S. R.; BITTENBENDER, H. C. Kaolin particle film use and its applicationon coffee. Hortscience, 42(7):1605-1608, 2007.

TAIZ, L. et al. Fisiologia e desenvolvimento vegetal. 6 ed. Porto Alegre: Artmed, 2017. 888p.

TEIXEIRA, P. C. et al. Manual de métodos de análises de solo. 3. ed. Brasília: Embrapa; 2017. 574p.

WÜNSCHE, J. N. et al. Sunburn on apples-causes and control mechanisms. Acta Horticulturae, 636(4):631-636, 2004.

Downloads

Published

2023-04-04

How to Cite

COSTA, B. P. .; TSUTSUMI, C. Y. .; REGO, C. A. R. de M. . Initial growth of coffee plants associated with the use of kaolinite and adjuvant. Coffee Science - ISSN 1984-3909, [S. l.], v. 18, p. e182046, 2023. DOI: 10.25186/.v18i.2046. Disponível em: https://coffeescience.ufla.br/index.php/Coffeescience/article/view/2046. Acesso em: 21 apr. 2024.