Isolation and identification of a native microbial consortium for the coffee pulp degradation above 2000 masl
DOI:
https://doi.org/10.25186/.v16i.1810Abstract
Pulp and mucilage constitute the most abundant by-products of the processing of coffee and inadequate handling produces high-rates of pollution. Considering that in nature there is a large number of cellulolytic microorganisms which can intervene in the degradation of coffee pulp, the inclusion of a native microbial cellulolytic consortium was assessed. The sample for insulation consisted of coffee pulp and soil from a humid forest at more than 2,000 m.a.s.l. Nutrient agar was used as a means of insulation for bacteria, and malt agar for fungi, supplemented with 50% soil extract and 1% carboxylmethylcellulose. This achieved the isolation of 118 strains of bacteria and 114 of fungi. Cellulolytic activity was established using the filter paper test, assessing and selecting only those that presented higher glucose production, among them 12 strains of fungi and 11 strains of bacteria. To attain the microbial consortium, randomized blends were performed for both fungi and bacteria, again assessing the production of glucose. The bacterial consortium was made up of Ochrobactrum pseudogrignonense, Paenibacillus lauruscon and Bacillus xiamenensis and the fungal consortium by Fusarium sp., Penicillum sp., Cylindrocarpon sp. The optimal treatment achieved a complete degradation of the pulp in 28 days, that would contribute to the recovery and conservation of the coffee ecosystem. Main interpretation was wet environment at more 2,000 m.a.s.l. is still good for coffee compost but different bacterial and fungi consortium were found supporting other recent work done with one type of consortium.
Key words: Carboxymethylcellulose (CMC); Cellulose; Coffee pulp; Degradation; Microbial consortium; Meters above sea level (masl).
References
ABARCA, G. H.; MOTA. R. M. Hongos saprobios y endomicorrizógenos en suelos. Agroecosistemas cafetaleros de veracruz: Biodiversidad, manejoy conservación, Mexico, vol.193, 2008. 203p.
ALVINDIA, D. G.; ACDA, A. M. Mycoflora of coffee beans in the Philippines. International Society for Southeast Asian Agricultural Sciences, 16(2):116-125, 2013.
BARBOSA, R. J. F.; MEZA, C. L. S. Antagonismo in vitro de Trichoderma harzianum rifai sobre Fusarium oxysporum schlecht f. sp passiflorae en maracuy (Passiflora edulis Sims var. Flavicarpa) del municipio zona bananera Colombiana. Revista Facultad Nacional de Agronomía-Medellín, 62(1):4743-4748, 2009.
BHOITE, R. N.; MURTHY, P. S. Biodegradation of coffee pulp tannin by Penicillium verrucosum for production of tannase, statistical optimization and its application. Food and Bioproducts Processing, 94:727-735, 2015.
BRESSANI, R. The by-products of coffee berries. In: BRAHAM, J. E.; BRESSANI, R. (Ed.). Coffee pulp- Composition, technology, and utilization. Ottawa, Canada: International Development Research Centre, p. 5-10, 1978.
BROSSI, M. J. et al. Soil-derived microbial consortia enriched with different plant biomass reveal distinct players acting in lignocellulose degradation. Microbial ecology, 71:616-627, 2016.
CÓRDOVA-BERRÍOS, L. L.; MUGRUZA-VASSALLO, C.; FLORES-BENITES, V. Missed signals in the congruency between visual distracting cues and auditory goals. In: Proceedings of the 8th International Conference on Information Communication and Management. New York NY United States: Association for Computing Machinery, p. 7-11, 2018.
DE BRUYN, F. et al. Exploring the impacts of postharvest processing on the microbiota and metabolite profiles during green coffee bean production. Applied and Environmental Microbiology, 83(1):2398-2414, 2017.
CALLE-VELEZ, H. Subproductos del café: Coffee by products. (Boletín Técnico No. 6) CENICAFE, 1977. 85p.
CARRILLO, L. Los hongos de los alimentos y forrajes. Argentina: Universidad Nacional de Salta, (Chapter 9), 2003. 98p.
CARVAJAL, J. E.; VALBUENA, J. O.; ROSERO, S. E. Evaluación in vitro de microorganismos nativos por su antagonismo contra moniliophthora roreri cif & par en cacao (theobroma cacao l.). Revista Facultad Nacional de Agronomía Medellín, 65(1):6305-6315, 2012.
CEDEÑO, M. G. et al. Aislamiento y selección de bacterias autóctonas de Manabí-Ecuador con actividad celulolítica. Cultivos Tropicales, 36(1):7-16, 2015.
CHONG, J. A.; DUMAS, J. A. Coffee pulp compost: Chemical properties and distribution of humic substances. The Journal of Agriculture of the University of Puerto Rico, 96(1-2):77-87 2012.
DIDANNA, H. L. A critical review on feed value of coffee waste for livestock feeding. World Journal of Biology and Biotechnology, 2:72-86, 2014.
DINIZ, I. C. et al. Degradation of sewage sludge compost disposed on the soil. Engenharia Agrícola, 36(5):822-829, 2016.
DUANGJAI, A. et al. Comparison of antioxidant, antimicrobial activities and chemical profiles of three coffee (Coffea arabica L.) pulp aqueous extracts. Integrative medicine research, 5(4):324-331, 2016.
FERRER-MARCELO, Y. et al. Selección de hongos aislados de bagazo de caña con actividad celulasa sobre celulosa cristalina para posibles aplicaciones industriales. ICIDCA, 45(1):3-12, 2011.
FRANÇA, L. et al. Seasonal and altitudinal changes of culturable bacterial and yeast diversity in alpine forest soils. Extremophiles, 20:855-873, 2016.
GAO, Z. et al. The production of β-glucosidases by Fusarium proliferatum NBRC109045 isolated from Vietnamese forest. AMB Express, 2(1):1-13, 2012.
GEREMU, M.; TOLA, Y. B.; SUALEH, A. Extraction and determination of total polyphenols and antioxidant capacity of red coffee (Coffea arabica L.) pulp of wet processing plants. Chem. Biol. Technol. Agric.3, 25, 2016.
GIRI, B. et al. Mycorrhizosphere: Strategies and functions. In: VARMA, A.; BUSCOT, F. Microorganisms in soils: Roles in genesis and functions. Springer: Berlin, Heidelberg, p. 213-252, 2005.
GUERRA, D. A.; FLOREZ, P. A.; ROSERO, S. E. Development and evaluation of an inoculum of cellulolytic fungi. Revista UDCA Actualidad & Divulgación Científica, 18(1):217-226, 2015.
HECK, K. et al. Temperatura de degradação de residuos em processo de compostagem e qualidade microbiológica do composto final. Revista Brasileira de Engenharia Agricola e Ambiental, 17(1):54-59, 2013.
JANISSEN, B.; HUYNH, T. Chemical composition and value-adding applications of coffee industry by-products: A review. Resources, Conservation and Recycling, 128:110-117, 2018.
JUNQUEIRA, A. C. et al. First description of bacterial and fungal communities in Colombian coffee beans fermentation analysed using Illumina-based amplicon sequencing. Scientific Reports, 9:8794, 2019.
KASANA, R. C. et al. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram's iodine. Current microbiology, 57:503-507, 2008.
KAUSAR, H. et al. Development of compatible lignocellulolytic fungal consortium for rapid composting of rice straw. International Biodeterioration & Biodegradation, 64(7):594-600, 2010.
MANTILLA, C. L.; PINEDA, R. C. Bacterias celulolíticas aisladas del intestino de termitas (Nasutitermes nigriceps) con características probióticas y potencial en la degradación del pasto. Revista Colombiana de Biotecnología, 15(1):8-16, 2013.
MAZZAFERA, P. Degradation of caffeine by microorganisms and potential use of decaffeinated coffee husk and pulp in animal feeding. Scientia Agricola, 59(4):815-821, 2002.
MILLER, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3):426-428, 1959.
MOREIRA D. P. et al. Contribution of chlorogenic acids to the iron-reducing activity of coffee beverages. Journal of Agricultural and Food Chemistry, 53(5):1399-1402, 2005.
MORENO, M. L.; VELEZ, D. U. Nuevo método para la cuantificación de la actividad endoglucanasa basado en el complejo celulosa-rojo congo. Orinoqua, 15(1):7-15, 2011.
MOROS, A. H. et al. Crecimiento de Macrophomina phaseolina y Fusarium oxysporum en medios de cultivo de harina de semillas de frijol Vigna unguiculata (L.) Walp., frijol chino Vigna radiata L. y quinchoncho Cajan uscajan (L.) millsp. Ciencia, 11(1):14-21, 2009.
MUGRUZA-VASSALLO, C.; POTTER, D. Context dependence signature, stimulus properties and stimulus probability as predictors of ERP amplitude variability. Frontiers in human neuroscience, 13:39, 2019.
MUGRUZA-VASSALLO, C. A. et al. Prior context influences motor brain areas in an auditory oddball task and prefrontal cortex multitasking modelling. Brain informatics, 8(1):1-28, 2021.
MURTHY, P. S.; NAIDU, M. M. Production and application of xylanase from Penicillium sp. utilizing coffee by-products. Food Bioprocess Technol, 5:657-664, 2012.
NAYAK, V. et al. A comparative study of caffeine degradation by four different fungi. Bioremediation Journal, 17(2):79-85, 2013.
INSTITUTO COLOMBIANO DE NORMAS TECNICAS Y CERTIFICACION-INCOTEC. Norma Técnica Colombiana NTC 5167: Productos para la industria agrícola. Productos orgánicos usados como abonos o fertilizantes y enmiendas de suelo. 1, INCOTEC, Colombia, p.1-40, 2004.
PADILLA, W. P.; ACEVES, M. O.; HERNANDEZ, A. E. Evaluación in vitro de hongos nematófagos en zonas arroceras de Costa Rica contra el nematodo agallador Meloidogyne javanica. Agronomía Costarricense, 38(2):19-32, 2014.
PARRA-GONZALEZ, E., CENTENO-BRICEÑO, S.; ARAQUE-CALDERON, Y. Actividad antifúngica de Burkholderia cepacia aislada de maíz amarillo (Zea mays L.) bajo diferentes condiciones de cultivo. Revista de la Sociedad Venezolana de Microbiología, 29:103-109, 2009.
RAMÍREZ, L. A. G.; BRAN, J. A. P.; URIBE, M. A. Evaluación in vitro de celulasas producidas por cepas nativas de Trichoderma reesei, Cladosporium herbarum y Aspergillus niger. Journal of Agriculture and Animal Sciences, 1(1):1-9, 2012.
RAMÍREZ, P.; COHA, J. M. Degradación enzimática de celulosa por actinomicetos termófilos: Aislamiento, caracterización y determinación de la actividad celulolítica. Revista Peruana de Biología, 10(1):67-77, 2013.
RAPHAEL, K.; VELMOUROUGANE, K. Vermicomposting of coffee processing wastes using exotic (Eudrilus Eugeniae) and native earthworm (Perionyxcey lanesis) species. Macromolecular Symposia, 320(1):61-69, 2012.
ROMANO, N. et al. Characterization of cellulolytic activities of environmental bacterial consortia from an Argentinian native forest. Current microbiology, 67(2):.138-147, 2013.
SAHU, A. et al. Thermophilic ligno-cellulolytic fungi: The future of efficient and rapid bio-waste management. Journal of environmental management, 244:144-153, 2019.
SAJITH, S. et al. Production and partial purification of cellulase from a novel fungus, Aspergillus flavus BS1. Annals of Microbiology, 64:763-771, 2014.
SALAZAR, A. N.; ACUÑA, R. S.; DE SALCEDO, M. G. Composición química de la pulpa de café a diferentes tiempos de ensilaje para su uso potencial en la alimentación animal. Zootecnia Tropical, 27(2):135-141, 2009.
SAMANIEGO-GAXIOLA, J. A.; CHEW-MADINAVEITIA, Y. Diversidad de géneros de hongos del suelo en tres campos con diferente condición agrícola en La Laguna. Revista Mexicana de Biodiversidad, 78(2):383-390, 2007.
SÁNCHEZ, G.; OLGUIN, E. J.; MERCADO, G. Accelerated coffee pulp composting. Biodegradation, 10:35-41, 1999.
SASHIDHAR, P.; DUBEY, M. K.; KOCHAR, M. Sensing soil microbes and interactions: How can nanomaterials help?. In: PRASAD, R. (eds). Microbial nanobionics. Nanotechnology in the Life Sciences. Springer: Cham, p. 213-236, 2019.
SAZCI, A.; ERENLER, K.; RADFORD, A. Detection of cellulolytic fungi by using Congo red as an indicator: A comparative study with the dinitrosalicyclic acid reagent method. Journal of Applied Bacteriology, 61(6):559-562, 1986.
SCHWIMMER, S.; KURTZMAN, R. H.; HEFTMANN, E. Caffeine metabolism by Penicillium roqueforti. Archives of biochemistry and biophysics, 147(1):109-113, 1971.
SERNA-JIMENEZ, J. A. et al. Aprovechamiento de la pulpa de café como alternativa de valorización de subproductos. Revista Ion, 31(1):37-42, 2018.
SHOKRKAR, H.; EBRAHIMI, S.; ZAMANI, M. A review of bioreactor technology used for enzymatic hydrolysis of cellulosic materials. Cellulose, 25(11):6279-6304, 2018.
SILES, J. A.; MARGESIN, R. Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in alpine forest soils: What are the driving factors. Microbial Ecology, 72:207-220, 2016.
SILES, J. A.; MARGESIN, R. Seasonal soil microbial responses are limited to changes in functionality at two Alpine forest sites differing in altitude and vegetation. Scientific Reports, 7:2204-2204, 2017.
SILVA, H.; LANDA, A.; AGOSIN, E. Aislamiento, selección y caracterización de hongos ligninoliticos chilenos. Archivos de biología y medicina experimentales, 23:41-49, 1990.
TORRES-TEJEDA, S. et al. Variations of reaction times explained by stimuli changes in size and perspective in 2D and 3D for selective attention. Revista Mexicana de Ingeniería Biomédica, 41(1):91-104, 2020.
ULLOA, R. J.; VERRETH, J. A. Growth, feed utilization and nutrient digestibility in tilapia fingerlings (Oreochromis aureus Steindachner) fed diets containing bacteria-treated coffee pulp. Aquaculture Research, 33(3):189-195, 2002.
ULSIDO, M. D.; LI, M. Effect of organic matter from coffee pulp compost on yield response of chickpeas (Cicer arietinum L.) in Ethiopia. Engineering for Rural Development, (15):1339-1347, 2016.
UTEKAR, G. V.; DESHMUKH, H. V. Characterization of Bacillus sps from gut flora of earthworm Eudrillus eugeniae feed on sugar industry waste. Research Journal of Life Sciences, 5(2):887-895, 2019.
VÁSQUEZ DE DIAZ, M. C.; PRADA, P. A.; MONDRAGON, M. A. Optimización del proceso de compostaje de productos post-cosecha (cereza) del café con la aplicación de microorganismos nativos. Nova, 8(14):214-219, 2010.
VÁZQUEZ, M. A. et al. Cellulolytic and ligninolytic potential of new strains of fungi for the conversion of fibrous substrates. Biotechnology Research and Innovation, 3(1):177-186, 2019.
VENEGAS, J. F.; SUAREZ, D. E. Screening para el aislamiento y caracterización de microorganismos y enzimas potencialmente útiles para la degradación de celulosas y hemicelulosas. Revista Colombiana de Biotecnología, 6(1):58-71, 2004.
VELASQUEZ, S. et al. Classification of the maturity stage of coffee cherries using comparative feature and machine learning. Coffee Science, 16:e161710, 2021.
VIEGAS, C. et al. Fungal contamination in green coffee beans samples: A public health concern. Journal of Toxicology and Environmental Health, 80:719-728, 2017.
VRDOLJAK, G. et al. Characterization of a diesel sludge microbial consortia for bioremediation. Scanning, 27(1):8-14, 2005.
WANG, C. M. et al. Characterization of a novel thermophilic, cellulose-degrading bacterium Paenibacillus sp. strain B39. Letters in applied microbiology, 47(1):46-53, 2008.
WIDJAJA, T. et al. Production of reducing sugar from coffee pulp waste using mixture of microorganisms, enzymes, and surfactants. IOP Conference Series: Materials Science and Engineering, 543:012003, 2019.
ZALDÍVAR, M. et al. Trichoderma aureoviride 7-121, a mutant with enhanced production of lytic enzymes: its potential use in waste cellulose degradation and/or biocontrol. Electronic Journal of Biotechnology, 4(3):13-14, 2001.
ZAMBRANO-FRANCO, D. A.; ISAZA-HINESTROZA, J. D. Demanda química de oxígeno y nitrógeno total, de los subproductos del proceso tradicional de beneficio húmedo del café. Cenicafé, 49(4):279-289, 1998.
ZAPATA, H. B. M.; CASTELLANOS, R. C. Aislamiento e identificación de bacterias celulolíticas termófilos de géiseres naturales de candarave - TACNA. Ciencia en Desarrollo, (18):29-36, 2014.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Coffee Science - ISSN 1984-3909Os direitos autorais dos artigos publicados nesta revista pertencem aos autores, com os primeiros direitos de publicação pertencentes à revista. Como os artigos aparecem nesta revista com acesso aberto, eles podem ser usados livremente, com as devidas atribuições, em aplicativos educacionais e não comerciais.