Review of the contributions of some statistical methodologies related to the quality of specialty coffee

Authors

  • Marcelo Ângelo Cirillo Universidade Federal de Lavras/UFLA, Departamento de Estatística, Lavras, MG, Brasil. https://orcid.org/0000-0002-2647-439X
  • Flávio Meira Borém Universidade Federal de Lavras/UFLA, Departamento de Engenharia Agrícola, Lavras, MG, Brasil. https://orcid.org/0000-0002-6560-8792
  • Mariana Resende Universidade Federal de Lavras/UFLA, Departamento de Estatística, Lavras, MG, Brasil. https://orcid.org/0000-0001-8814-4997
  • Paulo César Ossani Universidade Estadual de Maringá/UEM, Departamento de Estatística, Maringá, PR, Brasil. https://orcid.org/0000-0002-6617-8085
  • Gilberto Rodrigues Liska Universidade Federal de São Carlos/UFSCAR, Departamento de Tecnologia Agroindustrial e Socioeconomia Rural, Araras, SP, Brasil. https://orcid.org/0000-0002-5108-377X
  • Fortunato Silva Menezes Universidade Federal de Lavras/UFLA, Departamento de Física, Lavras, MG, Brasil. https://orcid.org/0000-0001-8945-2772

DOI:

https://doi.org/10.25186/.v19i.2250

Abstract

Sensory perception involves psychological issues and cognitive skills. The greatest individual differences are observed in sensory experiments, since tasters’ senses assign positive or negative attributes to a product, which are numerically represented by means of a hedonic scale. Thus, when considering statistical methodologies to evaluate the results, the question becomes a challenge to answer because its application requires presumptions that are not always met. In addition, answering a single objective limits the search for the state of the art, contextualized in the exploration of other results that arises from new applied methodologies. Based on this argument, this study aims to present a methodological review that presents the results and contributions of different statistical techniques, addressed by mixing distributions, resampling techniques to build indices robust to outliers, machine learning to I'm prove multivariate classifiers and visualization techniques of the data. These are derived from a single database, which references analyses of the quality of specialty coffees with denomination of known origins that are evaluated by heterogeneous groups of tasters. Based on the knowledge base of the researchers and a review of the literature, the aforementioned methodological procedures are applied, and their advantages and aggregate results are compared to the understanding of the behavioral attitudes that lead to the distinction of the quality of the coffees evaluated.

Key words: Taster; attributes; data mining; models; machine learning

References

AGGARWAL, C. C. Data mining: The textbook. New York: Springer, 2015. 763p.

AGTRON. Specialty Coffee Association. Roast color classification system. Long

Beach: SCAA, 2010. 9p.

ANDRADE, L. R.; CIRILLO, M. A.; BEIJO, L. A. Proposal of a bootstrap procedure using measures of influence in non-linear regression models with outliers. Acta Scientiarum Technology, 36(1):93-99, 2014.

BERTRAND, B. et al. Climatic factors directly impact the volatile organic compound Finger print in green Arabica coffee bean as well as coffee beverage quality. Food Chemistry, 135(4):2575-2583, 2012.

BHUMIRATANA, N.; ADHIKARI, K.; CHAMBERS, E. Evolution of sensory aroma attributes from coffee beans to brewed coffee. LWT Food Science and Technology, 44(10):2185-2192, 2011.

BORÉM F. M. et al. Coffee sensory quality study based on spatial distribution in the mantiqueira mountain region of Brazil. Journal of Sensory Studies, 35(2):e12552, 2020.

BREIMAN, L. Bagging predictors. Machine Learning, 24(2):123-140, 1996.

BROOKES, C. Consumer satisfaction: Advancements in theory, modeling, and empirical findings. International Journal of Marketing Research, 56(4):123-145, 2014.

BUENAVENTURA-SERRANO, C. E.; CASTAÑOCASTRILLÓN, J. J. Influencia de la altitud en la calidad de la bebida de muestras de café procedente del ecotopo 206B en Colombia. Cenicafé, 53(2):119-131, 2002.

CALCAGNOTO, L. R.; CIRILLO, M. A. Simulação da qualidade de cafés utilizando critérios da ABIC na discriminação de regiões com diferentes estruturas de dependência espacial. Revista Brasileira de Computação Aplicada, 16(2):31-44, 2024.

CLAYTON, M. K. How should we achieve high-quality reporting of statistics in scientific journals? A commentary on “Guidelines for reporting statistics in journals published by the American Physiological Society”. Advances in Physiology Education, 31(4):302-304, 2007.

COOK, D.; SWAYNE, D. F. Interactive and dynamic graphics for data analysis: With R and GGobi. New York: Springer, 2007. 300p.

COOK, D.; BUJA, A.; CABRERA, J. Projection pursuit indexes based on orthonormal function expansions. Journal of Computational and Graphical Statistics, 2(3):225-250, 1993.

COSTEL, E. A. Comparison of sensory methods in quality control. Food Quality and Preference, 13(6):341-353, 2002.

DAI, H. et al. Explaining consumer satisfaction of services: The role of innovativeness and emotion in an electronic mediated environment. Decision Support Systems, 70:97-106, 2015.

DAVISON, A. C.; HINKLEY, D. V. Bootstrap methods and their application. Cambridge: Cambridge University Press, 1997. 582p.

DECAZY, F. et al. Quality 568 of different Honduran coffees in relation to several environments. Journal of Food Science, 68(7):2356-2361, 2003.

DEMPSTER, A. P.; LAIRD, N. M. E.; RUBIN, D. B. Maximum likelihood from in-complete data via the EM algorithm. Journal of the Royal Statistical Society, 39(1):1-22, 1977.

FERREIRA, H. A. et al. Monte Carlo simulation and importance sampling applied to sensorial analysis validation of special coffee quality. Revista Ciência Agronômica, 52(2):1-6, 2021.

FILZMOSER, P.; MARONNA, R.; WERNER, M. Outlier identification in high dimensions. Computational Statistics and Data Analysis, 52(3):1694-1711, 2008.

FREUND, Y.; SCHAPIRE, R. E. Boosting: Foundations and algorithms. Cambridge, MA: MIT Press, 2012. 544p.

FRIEDMAN, J. H.; TUKEY, J. W. A projection pursuit algorithm for exploratory data analysis. IEEE Transaction on Computers, 23(9):881-890, 1974.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA- IBGE. Cidades. Rio de Janeiro: IBGE, 2009. Available in: http://geoftp.ibge.gov.br/MME2007/MG/CARMO%20DE%20MINAS.pdf. Access in: September 19, 2024.

JOHNSON, S. B.; BERGER, R. D. On the status of statistics in phytopathology. Phytophatology, 72(8):1014-1015, 1982.

LANKTON, N. K.; MCKNIGHT, H. D. Examining two expectation disconfirmation theory models: Assimilation and asymmetry effects. Journal of the association for information systems, 13(2):88-115, 2012.

LI, Y. et al. Algorithm for gaussian mixture model based wireless channel multipath clustering. International Journal of Antennas and Propagation, 4:1-10, 2019.

LIM, J.; WOOD, A.; GREEN, B. G. Derivation and evaluation of a labeled hedonic scale. Chemical Senses, 34(9):739-751, 2009.

LIM, J. Hedonic scaling: A review of methods and theory. Food Quality and Preference,

(8):733-747, 2011.

LIM, J.; FUJIMARU, T. Evaluation of the labeled hedonic scale under different experimental conditions. Food Quality and Preference, 21(5):521-530, 2010.

LINGLE, T. R. The coffee cupper’s handbook: Systematic guide to the sensory evaluation of coffee’s flavor. Long Beach: Specialty Coffee Association of America. 2011. 66p.

LISKA, G. R. et al. Avaliação de painéis sensoriais com consumidores de bebidas de cafés especiais utilizando o método boosting na análise discriminante. Semina - Ciências Agrárias, 36(6):3671-3679, 2015.

MAKAREM, S. C.; JAE, H. Consumer boycott behavior: An exploratory analysis of twitter feeds. Journal of Consumer Affairs, 50(1):193-223, 2016.

MOSKOWITZ, H. R.; SIDEL, J. L. Magnitude and hedonic scales of food acceptability. Journal of Food Science, 36 (4):677-680, 1971.

OLIVEIRA, L. K. et al. Feasibility of the expectation-maximization algorithm for assessing individuals with different sensory perceptions in discrimination of specialty coffees. Acta Scientiarum Technology, 45:e60184, 2023.

OLIVEIRA, L. M. et al. Machine Learning techniques in muliclass problems with application in sensorial analysis. Concurreny and Computation, 32(2):1-12, 2019.

OLIVER, R. Satisfaction: A behavioral perspective on the consumer. New York, Routledge: Taylor and Francis Group, 2015. 544p.

ONOFRI, U. M. et al. Current statistical issues in weed research. European Weed Research Society Weed Research, 50(1):5-24, 2009.

OSSANI, P. C. et al. Unsupervised classification of specialty coffees in homogeneous sensory attributes through machine learning. Coffee Science, 15:e151780, 2020.

OSSANI, P. C.; RAMOS, M. F.; CIRILLO, M. A. Proposition of a new index for projection pursuit in the multiple factor analysis. Computational and Mathematical Methods, 3(4):1-19, 2020.

PEÑA, D.; PRIETO, F. Multivariate outlier detection and robust covariance matrix estimation. Technometrics, 43(3):286-310, 2001.

PEREIRA, P. P. et al. The consistency in the sensory analysis of coffees using Q-graders. European Food Research and Technology, 243:1545-1554, 2017.

PERYAM, D. R.; PILGRIM, F. J. Hedonic scale method of measuring food preference. Food Technology, 11:9-14, 1957.

RAMOS, M. F. et al. Discrimination of the sensory quality of the Coffea arabica L. (cv. Bourbon Amarelo) produced in different altitudes using decision trees obtained by the CHAID method. Journal of the Science of Food and Agriculture, 96(10):3543-3551, 2016.

RESENDE, M.; CIRILLO, M. A.; BORÉM, F. M. An index to evaluate the acceptance of specialty coffees in consumer groups. Engenharia Agrícola, 40(5):624-630, 2020.

RESENDE, M.; BORÉM, F. M.; CIRILLO, M. A. Case study of modeling covariance between external factors and sensory perception of coffee, Coffee Science, 18:e182112, 2023.

SCHAPIRE, R. E. The stength of weak learnability. Machine learning, 5:197-227, 1990.

SCHUTZ, H. G.; CARDELLO, A.V. A labeled affective magnitude (LAM) scale for assessing food liking/disliking. Journal of Sensory Studies, 16 (2):117-159, 2001.

SINGHAM, P.; BIRWAL, P.; YADAV, B. K. Importance of objective and subjective measurement of food quality and their inter-relationship. Food Processing and Technology, 6(9):2-7, 2015.

SORENSEN, B.; ANDERSEN, C.; ANDERSEN, M. P. Consumer satisfaction and confirmation of habits of comprehension: the effects of inductive print advertisements – Peircean comments. Semiotica, 199:159-174, 2014.

VELÁSQUEZ, S. et al. Classification of the Maturity stage of coffee cherries using comparative feature and machine learning, Coffee Science, 16:e161710, 2021.

VILLANUEVA, N. D. M.; DA SILVA, M. A. A. P. Comparative performance of the nine-point hedonic, hybrid and self-adjusting scales in the generation of internal preference maps. Food Quality and Preference, 20(1):1-12, 2009.

WAGENMAKERS, E. J. et al. Seven steps toward more transparency in statistical practice. Nature Human Behaviour, 5:1473-1480, 2021.

WORKU, M. et al. Effect of altitude on biochemical composition and quality of green arabica coffee beans can be affected by shade and postharvest processing method. Food Research International, 105:278-285, 2018.

Downloads

Published

2024-11-08

How to Cite

CIRILLO, M. Ângelo .; BORÉM, F. M.; RESENDE, M.; OSSANI, P. C.; LISKA, G. R.; MENEZES, F. S. Review of the contributions of some statistical methodologies related to the quality of specialty coffee. Coffee Science - ISSN 1984-3909, [S. l.], v. 19, p. e192250, 2024. DOI: 10.25186/.v19i.2250. Disponível em: https://coffeescience.ufla.br/index.php/Coffeescience/article/view/2250. Acesso em: 14 jan. 2025.

Issue

Section

Article Review