Potential of ectomycorrhizal and endomycorrhizal fungi in Coffea spp. plantations

Authors

  • Alexis Alejandro Salazar Navarro Instituto de Ciencias Agrícolas de la Universidad Autónoma de Baja California (ICA-UABC), Mexicali, Baja California, México. https://orcid.org/0000-0001-6082-4560
  • Víctor Manuel Ruíz-Valdiviezo Instituto de Ciencias Agrícolas de la Universidad Autónoma de Baja California (ICA-UABC), Mexicali, Baja California, México. https://orcid.org/0000-0003-0572-8845
  • José Gregorio Joya-Dávila Instituto de Ciencias Agrícolas de la Universidad Autónoma de Baja California (ICA-UABC), Mexicali, Baja California, México. https://orcid.org/0000-0001-6342-4212
  • Daniel González-Mendoza Instituto de Ciencias Agrícolas de la Universidad Autónoma de Baja California (ICA-UABC), Mexicali, Baja California, México. https://orcid.org/0000-0002-8888-5688

DOI:

https://doi.org/10.25186/.v19i.2242

Abstract

The agroecosystem where coffee plantations are located can be determinant to the longevity, health and quality of coffee beans and plants.  In this context, it is important to consider the implementation of ectomycorrhizal and endomycorrhizal fungus, these to achieve the proper management of coffee plantations, especially in natural shaded ones.  In natural shaded coffee plantations, a several of organisms interact with coffee plants. The microorganisms in the rhizosphere are determinant to achieve the proper nutrition in coffee plants. Endomycorrhizal or arbuscular mycorrhizal can complete a mutualistic symbiotic interaction directly with coffee plants, this interaction can prepper the coffee plants to the attack of future pathogens by “maintaining alert” they defense mechanisms. Otherwise, to the date ectomycorrhizal fungus has not been reported to achieve a symbiotic interaction directly with coffee plants but has been reported in natural shaded coffee plantation, probably by their interaction with surrounding trees in the plantation.  The ectomycorrhizal fungus also can improve and alert the defense mechanism of plants and both mycorrhizal interactions can enhance the uptake of micro and macronutrients to coffee plants and improve the organic matter uptake, which can impact positively to the coffee cup quality.  The present review establishes the importance to deepen into mycorrhizal interaction with coffee plants and to generate more research around endo- and ectomycorrhizal interactions with coffee plants.

Key words: Inorganic phosphorous deficiency; Myc factors; mycorrhizal-induced resistance; symbiotic interactions; systemic acquired resistance

References

AHAMMED, G. J.; HAJIBOLAND, R. Introduction to arbuscular mycorrhizal fungi and higher plant symbiosis: Characteristic features, functions, and applications. In: AHAMMED, J. G.; HAJIBOLAND, R. (Eds.), Arbuscular mycorrhizal fungi and higher plants: fundamentals and applications. Springer Nature Singapore. p. 1-17, 2024.

ANDRADE, C. C. L. et al. Infection process and defense response of two distinct symptoms of Cercospora leaf spot in coffee leaves. Phytoparasitica, 49(4):727-737, 2021.

ANZUETO-HERÓN, Z. C. et al. Growth of four varieties of coffea arabica l. biofertilized with rhizophagus intraradices and azospirillum brasilense in nursery. American Journal of Plant Sciences, 14(5):552-568, 2023.

AVILA BAYONA, C. P. Soil Quality Indicators Associated With The Application Of Mycorrhizal Fungi In Coffee Plantations. Ingeniería Solidaria, 16(3), 2020.

BASSO, V. et al. An ectomycorrhizal fungus alters sensitivity to jasmonate, salicylate, gibberellin, and ethylene in host roots. Plant Cell and Environment, 43(4):1047-1068, 2020.

BATISTA, L. R. et al. Coffee: Types and production. In: CABALLERO, B.; FINGLAS, P. M.; TOLDRÁ, F. Encyclopedia of food and health. Academic Press, p. 244-251, 2015.

BONFANTE, P.; GENRE, A. Mechanisms underlying beneficial plant - Fungus interactions in mycorrhizal symbiosis. Nature Communications, 1(4):1-11, 2010.

CAITLIN, L. Distribution of American Leaf Spot disease (Mycena citricolor) in coffee plantations in Cañitas, Costa Rica. Tropical Ecology and Conservation, 8:1-11, 2008.

CHOT, E.; REDDY, M. S. Role of ectomycorrhizal symbiosis behind the host plants ameliorated tolerance against heavy metal stress. Frontiers in Microbiology, 13:855473, 2022.

COSTA, R. N. et al. Hormetic effect of glyphosate on the morphology, physiology and metabolism of coffee plants. Plants, 12(12), 2023.

DA SILVA CAMPOS, M. A. Applications of arbuscular mycorrhizal fungi in controlling root-knot nematodes. In: AHAMMED, G. J.; R. HAJIBOLAND, R. (Eds.), Arbuscular mycorrhizal fungi and higher plants: fundamentals and applications. Springer Nature Singapore. 225-237, 2024.

DAMON, A. A review of the biology and control of the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). Bulletin of Entomological Research, 90:453-465, 2000.

DANTAS, J. et al. A comprehensive review of the coffee leaf miner leucoptera coffeella (Lepidoptera: Lyonetiidae) a major pest for the coffee crop in brazil and others neotropical countries. Insects, 12(12), 2021.

DAVIS, F. L. S. A. P. et al. An annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Botanical Journal of the Linnean Society, 152(4):465-512, 2006.

DEY, M.;GHOSH, S. Arbuscular mycorrhizae in plant immunity and crop pathogen control. Rhizosphere, 22:100524, 2022.

DOWARAH, B. et al. Arbuscular mycorrhizal fungi in conferring tolerance to biotic stresses in plants. Journal of Plant Growth Regulation, 41(4):1429-1444, 2022.

DREISCHHOFF, S. et al. Local responses and systemic induced resistance mediated by ectomycorrhizal fungi. Frontiers in Plant Science, 11:590063, 2020.

FERREIRA, J. L. et al. Genetic diversity of coffea arabica. In: MAIA, R.; CAMPOS de ARAÚJO, M.; Genetic variation. IntechOpen, v. 1, p. 1-23, 2021.

FILHO, O. G. Coffee leaf miner resistance. Brazilian Journal of Plant Physiology, 18(1):109-117, 2006.

FUNLAYO, A. et al. Coffee: Botany, distribution, diversity, chemical composition and its management. IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS), 10(7):57-62, 2017.

GENRE, A. et al. Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology, 18(11):649-660, 2020.

GRANADOS-MONTERO, M. et al. Leaf litter and Mycena citricolor inoculum on the American leaf spot epidemic. Agronomia Mesoamericana, 31(1):77-94, 2020.

HAJIBOLAND, R.; AHAMMED, G. J. Signaling events during the establishment of symbiosis between arbuscular mycorrhizal fungi and plant roots. In: AHAMMED, G. J.; HAJIBOLAND, R. (Eds.), Arbuscular mycorrhizal fungi and higher plants: fundamentals and applications. Springer Nature Singapore, p. 67-97, 2024.

HERNÁNDEZ-ACOSTA, E. et al.. Arbuscular mycorrhiza as a biofertilizer in production of coffee. Terra Latinoamericana, 38(3):613-628, 2020.

HO-PLÁGARO, T.; GARCÍA-GARRIDO, J. M. Molecular Regulation of Arbuscular Mycorrhizal Symbiosis. International Journal of Molecular Sciences, 23(11):5960, 2022.

ISIDRA-ARELLANO, M. C.; DELAUX, P. M.; VALDÉS-LÓPEZ, O. The Phosphate starvation response system: Its role in the regulation of plant-microbe interactions. Plant and Cell Physiology, 62(3):392-400, 2021.

JARAMILLO, J. et al. Coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae): Searching for sustainable control strategies. Bulletin of Entomological Research, 96(3):223-233, 2006.

JOHNSON, M. A. et al. Coffee berry borer (Hypothenemus hampei), a global pest of coffee: Perspectives from historical and recent invasions, and future priorities. Insects, 11(12):1-35, 2020.

JÚNIOR, P. P. et al. Agroecological coffee management increases arbuscular mycorrhizal fungi diversity. PLoS ONE, 14(1):e0209093, 2019.

KASHYAP, P. et al. Arbuscular mycorrhizal fungi (AMF)-mediated control of foliar fungal diseases. In: AHAMMED, G. J.; HAJIBOLAND, R. (Eds.), Arbuscular mycorrhizal fungi and higher plants: Fundamentals and applications. Springer Nature Singapore. p. 193-123, 2024.

KEBERT, M. et al. Ectomycorrhizal fungi modulate biochemical response against powdery mildew disease in quercus robur L. Forests, 13(9):1491, 2022.

LI, J. et al. Rhizosphere microbiome: The emerging barrier in plant-pathogen interactions. in Frontiers in Microbiology, 12:772420, 2021.

LIVNE-LUZON, S. et al. Tell me who your neighbors are: The role of spatial location and tree species identity in determining the ectomycorrhizal community composition of saplings and mature trees in a mixed conifer forest. BioRxiv, 10(27):514003, 2022.

MITRA, D. et al. Involvement of strigolactone hormone in root development, influence and interaction with mycorrhizal fungi in plant: Mini-review. Current Research in Microbial Sciences, 2:100026, 2021.

MORTIER, E. et al. Forty years of study on interactions between walnut tree and arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development, 40(43), 2020.

MOTTA, I. O. et al. The coffee leaf miner, Leucoptera coffeella (Lepidoptera: Lyonetiidae): Identification of the larval instars and description of male and female genitalia. Revista Brasileira de Entomologia, 65(3):e20200122, 2021.

MÜNCHOW, M. et al. Roasting conditions and coffee flavor: A multi-study empirical investigation. Beverages, 6(2):29, 2020.

N. Z. MUKASA. Cercospora Leaf Spot and Berry Blotch of Coffee. Pest Management Decision Guide: Green and Yellow List. 2009.

NAIR, K. P. P. Coffee. In: K.P. Prabhakaran Nair; The agronomy and economy of important tree crops of the developing world. Elsevier. p. 181-208, 2010.

NE PERROIS, C. et al. Differential regulation of caffeine metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta). Planta, 241:179-191, 2015.

PANDEY, M. et al. An overview on possible management strategies for coffee white stem borer Xylotrechus quadripes Chevrolat (Coleoptera: Cerambycidae) in Nepal. Heliyon, 8(9):e10445, 2022.

PATAY, É. B.; BENCSIK, T.; PAPP, N. Phytochemical overview and medicinal importance of Coffea species from the past until now. Asian Pacific Journal of Tropical Medicine, 9(12):1127-1135, 2016.

PEREA ROJAS, Y. D. C. et al. Effects of native arbuscular mycorrhizal and phosphate-solubilizing fungi on coffee plants. Agroforestry Systems, 93(3):961-972, 2019.

PRATES JÚNIOR, P. et al. Soil microorganisms and quality of the coffee beverage. Food Engineering Series, 101-147, 2021.

PUGA, M. I. et al. Recent advances in research on phosphate starvation signaling in plants. Journal of Plant Research, 137(3):315-330, 2024.

RAJUS, S. et al. Behavioral ecology of the coffee white stem borer: Toward ecology-based pest management of India’s coffee plantations. Frontiers in Ecology and Evolution, 9:607555, 2021.

RIAZ, M. et al. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: A critical review. Journal of Hazardous Materials, 402:123919, 2021.

ROBDRUP, M. et al. Arbuscular mycorrhizal fungi under intercrop, regenerative, and conventional agriculture systems. In: HAMMED, G. J.; HAJIBOLAND, R.; Arbuscular mycorrhizal fungi and higher plants. Springer Nature Singapore. 2024, (pp. 287–318).

ROJO JIMÉNEZ, E. Café I (G. Coffea). Reduca (Biología). Serie Botánica, 7(2):113-132, 2014.

ROMERO, J. M.; CAMILI, J. Manual de producción sostenible de café en la República Dominicana. Instituto Interamericano de Cooperación para la Agricultura. República Dominicana : IICA, 2019. 104p.

ROMERO, J. V. et al. Caracterización citogenética y morfológica de híbridos interespecíficos entre C. arabica y las especies diploides C. liberica y C. Eugenioides. Cenicafé, 61(3):206-221, 2010.

SALAZAR-NAVARRO, A. et al. Coffee leaf rust (Hemileia Vastatrix) disease in coffee plants and perspectives by the disease control. Phyton-International Journal of Experimental Botany, 93(5):923-949, 2024.

SALOJÄRVI, J. et al. The genome and population genomics of allopolyploid Coffea arabica reveal the diversification history of modern coffee cultivars. Nature Genetics, 56(4):721-731, 2024.

SANTOS-SÁNCHEZ, N. F. et al. Shikimic Acid Pathway in Biosynthesis of Phenolic Compounds. In: SOTO-HERNÁNDEZ, M.; GARCÍA-MATEROS, R.; PALMA-TENANGO, M. Physiological aspects of phenolic compounds. IntechOpen, 2019, (pp. 1–16).

SCALABRIN, S. et al. A single polyploidization event at the origin of the tetraploid genome of Coffea arabica is responsible for the extremely low genetic variation in wild and cultivated germplasm. Scientific reports, 10:4642, 2020.

SOUZA, A. G. C. et al. Infection process of cercospora coffeicola on coffee leaf. Journal of Phytopathology, 159(1):6-11, 2011.

STRULLU-DERRIEN, C. et al. The origin and evolution of mycorrhizal symbioses: From palaeomycology to phylogenomics. New Phytologist, 220(4):1012-1030, 2018.

STUART, E. K.; PLETT, K. L. Digging deeper: in search of the mechanisms of carbon and nitrogen exchange in ectomycorrhizal symbioses. Frontiers in Plant Science, 10:1658, 2020.

SUNARHARUM, W. B. et al. Complexity of coffee flavor: A compositional and sensory perspective. Food Research International, 62:315-325, 2014.

TALHINHAS, P. et al. Overview of the functional virulent genome of the coffee leaf rust pathogen Hemileia vastatrix with an emphasis on early stages of infection. Frontiers in Plant Science, 5(88):1-17, 2014.

TOMINAGA, T. et al. Gibberellin promotes fungal entry and colonization during paris-type arbuscular mycorrhizal symbiosis in eustoma grandiflorum. Plant and Cell Physiology, 61(3):565-575, 2020.

TRAI, N. et al. Arbuscular mycorrhizal fungi (AMF) product for enhancing plant growth promotion and plant protection in Piper longum L., Zea mays L. and Coffea arabica L. International Journal of Agricultural Technology, 19(4):1591-1604, 2023.

VALLEJOS-TORRES, G. et al. Influence of arbuscular mycorrhizal fungi on biological control of coffee lear rust (Hemileia vastatrix Berk. & Broome). Bioagro, 35(1):21-32, 2023.

VALLEJOS-TORRES, G. et al. The role of arbuscular mycorrhizal fungi against root-knot nematode infections in coffee plants. Journal of Soil Science and Plant Nutrition, 21(1):364-373, 2021.

VEGA, F. E. et al. Coffee insects: Ecology and control. In: PIMENTEL, D.; Encyclopedia of Pest Management. Taylor & Francis, 2006, (pp. 1–4).

VENKATESHA, M. G.; DINESH, A. S. The coffee white stemborer Xylotrechus quadripes (Coleoptera: Cerambycidae): Bioecology, status and management. International Journal of Tropical Insect Science, 32(4):177-188, 2012.

VISHWANATHAN, K. et al. Ectomycorrhizal fungi induce systemic resistance against insects on a nonmycorrhizal plant in a CERK1-dependent manner. New Phytologist, 228(2):728-740, 2020.

VITZTHUM, O. G. Thirty years of coffee chemistry research. In: TERANISHI, R.; WICK, E. L.; HORNSTEIN, I. Flavor chemistry. Springer, p.117-133, 1999.

WANG, Y. H. et al. Improvement of sphaeropsis shoot blight disease resistance by applying the ectomycorrhizal fungus Hymenochaete sp. Rl and Mycorrhizal Helper Bacterium Bacillus pumilus HR10 to Pinus thunbergii. Phytopathology, 112(6):1226-1234, 2022.

WU, C. et al. Quo vadis: signaling molecules and small secreted proteins from mycorrhizal fungi at the early stage of mycorrhiza formation. Symbiosis, 85:123-143, 2021.

YAN, H. et al. Mycorrhizal symbiosis pathway and edaphic fertility frame root economics space among tree species. New Phytologist, 234(5):1639-1653, 2022.

ZARZA, E. et al. Fungal diversity in shade-coffee plantations in Soconusco, Mexico. PeerJ, 10, 2022.

Downloads

Published

2024-11-13

How to Cite

NAVARRO, A. A. S. .; RUÍZ-VALDIVIEZO, V. M.; JOYA-DÁVILA, J. G.; GONZÁLEZ-MENDOZA, D. Potential of ectomycorrhizal and endomycorrhizal fungi in Coffea spp. plantations. Coffee Science - ISSN 1984-3909, [S. l.], v. 19, p. e192242, 2024. DOI: 10.25186/.v19i.2242. Disponível em: https://coffeescience.ufla.br/index.php/Coffeescience/article/view/2242. Acesso em: 14 jan. 2025.

Issue

Section

Article Review