Effect of temperature and photoperiod on Pseudomonas syringae pv. garcae inoculum production

Authors

  • Júlia Marques Oliveira Universidade Federal de Lavras, Departamento de Fitopatologia, Lavras, MG, Brasil. https://orcid.org/0000-0001-9279-9099
  • Edson Ampélio Pozza Universidade Federal de Lavras, Departamento de Fitopatologia, Lavras, MG, Brasil. https://orcid.org/0000-0003-2813-584X
  • Leônidas Leoni Belan Universidade Estadual da Região Tocantina do Maranhão, Centro de Ciências Agrárias, Imperatriz, Maranhão, Brasil. https://orcid.org/0000-0002-7966-4963
  • Marcelo Loran de Oliveira Freitas Instituto Federal de Minas Gerais, Departamento de Ciências Agrárias, Bambuí, MG, Brasil. https://orcid.org/0000-0002-1183-1630
  • Vitória Moreno Tedardi Universidade Federal de Lavras, Departamento de Fitopatologia, Lavras, MG, Brasil. https://orcid.org/0000-0001-6229-812X

DOI:

https://doi.org/10.25186/.v19i.2238

Abstract

Bacterial halo blight (BHB), whose etiological agent is the bacterium Pseudomonas syringae pv. garcae, is one of the main diseases occurring in coffee (Coffea arabica L.) leading to losses in nurseries and fields. This study aimed to assess the effect of five temperatures (20, 25, 30, 35, and 40 °C) and three photoperiods (continuous light, 12-hour light/dark, continuous dark) on the P. syringae pv. garcae inoculum concentration and the BHB progression re sulted from this inoculum, in coffee seedlings. Using a factorial design (5 x 3) with four replicates, Petri dishes inoculated with P. syringae pv. garcae were incubated for 48 hours, and the concentrations and bacterial cell dimensions were measured. The resulting inoculum was then used to inoculate coffee seedlings at 23 ± 2 °C in one leaf pair by wounding inoculation using a multi-needle apparatus. The disease severity was assessed, and the area under the disease progress curve (AUDPC) was calculated. Significant interaction (p < 0.05) between temperature and photoperiod was observed for inoculum concentration and cell dimensions. The highest inoculum concentration (2.2 x 10⁹ CFU/ml) was recorded at 25 °C under continuous light. The largest bacterial cells (4.4 µm in length and 0.7 µm in width) resulted from temperatures of 30 °C with 12-hour light/dark. For the AUDPC of BHB, a difference (p < 0.05) was observed only between inoculum production temperatures. The highest AUDPC was recorded at 25 °C, with a gradual decline observed as the temperature increased.

Key words: Bacterial inoculation; bacterial halo blight; Coffea arabica L.; concentration; disease severity

References

AMARAL, J. F.; TEIXEIRA, C.; PINHEIRO, E. D. A bacterium causing halo blight of coffee. Arquivos do Instituto Biológico, 23:151-155, 1956.

ANDRADE, G. C. G. et al. Características culturais e severidade da mancha foliar de Quambalaria eucalypti sob diferentes regimes de temperatura, luz e período de molhamento foliar. Fitopatologia Brasileira, 32(4):329–334, 2007.

COMPANHIA NACIONAL DE ABACTECIMENTO – CONAB. Safra brasileira de café. (2024). Available in: <https://www.conab.gov.br/info-agro/safras/cafe>. Access in: July 11, 2024.

BELAN, L. L. et al. Diagrammatic scale for assessment of bacterial blight in coffee leaves. Journal of Phytopathology, 162:801–819, 2014a.

BELAN, L. L. et al. Occurrence of Pseudomonas syringae pv. garcae in coffee seeds. Australian Journal of Crop Science, 10(7):1015–1021, 2016.

BELAN, L. L. et al. mancha aureolada do cafeeiro. Revisão Anual de Patologia de Plantas, 22:227–256, 2014b.

BERIAM, L. O. S. et al. Diferenciação de bactérias do gênero Pseudomonas patogênicas ao cafeeiro por técnicas serológicas. Arquivos do Instituto Biológico, 84:1–7, 2017.

BODELIER, P. L. E. et al. Effects of photoperiod on growth of and denitrification by Pseudomonas chlororaphis in the root zone of Glyceria maxima, studied in a gnotobiotic microcosm. Plant and Soil, 190:91–103, 1997.

CAMPBELL, C. L.; MADDEN, L. V. Introduction to plant disease epidemiology. New York: John Wiley, 1990. 523p.

COLHOUN, J. Effects of environmental factors on plant disease. Annual Review of Phytopathology, 11:343–364, 1973.

DOMINGUES, M. V. P. F. et al. Controle químico e biológico da mancha aureolada em mudas de cafeeiro. In: IX SIMPÓSIO DE PESQUISA DOS CAFÉS DO BRASIL, Curitiba–PR, SBICafé, 2015.

FREITAS, M. L. O. et al. Copper formulations in bacterial blight control and toxic effects on coffee seedlings. Bioscience Journal, 38:e38043, 2022.

HOCKETT, K. L.; BURCH, A. Y.; LINDOW, S. E. Thermo-regulation of genes mediating motility and plant interactions in Pseudomonas syringae. PLoS One, 8(3):e59850, 2013.

ITHIRU, J. M. et al. A comparative analysis associated to virulence of Pseudomonas syringae pv. garcae, the causative agent of bacterial blight of coffee in Kenya. The Journal of Agricultural Science, 2:76-84, 1970.

ITHIRU, J. M. et al. Methods for early evaluation for resistance to bacterial blight of coffee. African Journal of Agriculture Research, Lesotho, 8(21):2450–2454, 2013.

KADO, C. I.; HESKETT, M. G. Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas. Phytopathology, 60:969–976, 1970.

KRIEG, N. R. Gram-negative aerobic rods and cocci (Family I. Pseudomonadaceae). In: KRIEG, N. R.; HOLT, J. G. Bergey’s manual of systematic bacteriology. vol. 1. Williams & Wilkins, Baltimore, p.140–219, 1984.

LAM, O.; WHEELER, J.; TANG, C. M. Thermal control of virulence factors in bacteria: A hot topic. Virulence, 5(8):852–862, 2014.

LATORRE, G.; RIOJA, M. E.; LILLO, C. Efecto de la temperatura en el desarrollo de la infección producida por Botrytis cinerea en flores y bayas de uva de mesa. Ciência e Investigacion Agrária, 29(3):145–152, 2002.

MUELLER, D. S.; BUCK, J. W. Effects of light, temperature, and leaf wetness duration on daylily rust. Plant Disease, 87(4):442–445, 2003.

NAIR, N. G.; ALLEN, R. N. Infection of grape flowers and berries by Botrytis cinerea as a function of time and temperature. Mycological Research, 97(8):1012–1014, 1993.

NÜSKE, J.; FRITSCHE, W. Phaseolotoxin production by Pseudomonas syringae pv. phaseolicola: the influence of temperature. Journal of Basic Microbiology, 29:441–447, 1989.

OLIVEIRA, J. M. et al. Efficiency of inoculation methods for the assessment of bacterial halo blight in coffee seedlings. Journal of Phytopathology, 172(3):e13336, 2024.

OLIVEIRA, J. R.; ROMEIRO, R. S. Reação de folhas novas e velhas de cafeeiro a infecção por Pseudomonas cichorii e P. syringae pv. garcae. Fitopatologia Brasileira, 15(4), 355–356. 1990.

PÉREZ, C. D. P. et al. Nitrogênio e potássio na intensidade da mancha aureolada do cafeeiro em solução nutritiva. Coffee Science, 12:60–68, 2017.

POZZA, E. A. et al. Manejo sustentável de doenças em cafeeiros de alta produtividade. In: SANTINATO, F. (Eds.). A moderna cafeicultura brasileira: Tecnologias que afetam a produtividade. 01 ed. Jaboticabal: Funep, p. 510–511, 2022.

RAIMUNDI, M. K. et al. Diagnosis of leaf bacterial diseases of coffee reveals the prevalence of halo blight. Ciência e Agrotecnologia, 45:e000121, 2021.

RODRIGUES, L. M. et al. Aggressiveness of strains and inoculation methods for resistance assessment to bacterial halo blight on coffee seedlings. Journal of Phytopathology, 165(2):105–114, 2017.

RODRIGUES, L. M. R. et al. Mancha aureolada do cafeeiro causada por Pseudomonas syringae pv. garcae. Campinas: Instituto Agronômico de Campinas, 2013. 24p.

SHANER, G.; FINNEY, R. E. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in knox wheat. Phytopathology, 70:1183–1186, 1977.

SILVA, M. G. et al. Effect of light and temperature on Cercospora coffeicola and Coffea arabica pathosystem, Coffee Science, 11(2):148-160, 2016

SILVEIRA, E. B. et al. Influência da temperatura, umidade, concentração de inóculo de Acidovorax avenae subsp. citrulli e idade do fruto no desenvolvimento da mancha-aquosa em melão. Fitopatologia Brasileira, 29(1):36, 2004.

SIRJUSINGH, C.; SUTTON, J. C. Effects of wetness duration and temperature on infection of geranium by Botrytis cinerea. Plant Disease, 80(2):160–165, 1996.

UNITED STATES DEPARTMENT OF AGRICULTURE – USDA. Production – coffee. 2024. vailable in: <https://fas.usda.gov/data/production/commodity/0711100>. Access in: August 9, 2024.

YANG, D. C.; BLAIR, K. M.; SALAMA, N. R. Staying in shape: The impact of cell shape on bacterial survival in diverse environments. Microbiology and Molecular Biology Reviews, 80(1):187–203, 2016.

YOUNG, J. M.; LUKETINA, R. C.; MARSHALL, A. M. The effects on temperature on growth in vitro of Pseudomonas syringae and Xanthomonas pruni. Journal of Applied Bacteriology, 42(3):345–354, 1977.

Downloads

Published

2024-11-12

How to Cite

OLIVEIRA, J. M.; POZZA, E. A. .; BELAN, L. L.; FREITAS, M. L. de O.; TEDARDI, V. M. . Effect of temperature and photoperiod on Pseudomonas syringae pv. garcae inoculum production. Coffee Science - ISSN 1984-3909, [S. l.], v. 19, p. e192238, 2024. DOI: 10.25186/.v19i.2238. Disponível em: https://coffeescience.ufla.br/index.php/Coffeescience/article/view/2238. Acesso em: 14 jan. 2025.