Effect of extraction processing parameters using a ribbon blender on the physicochemical properties of coffee

Authors

  • Paula Andrea Mayorga Barriga Universidad de La Sabana, Facultad de Ingeniería, Maestría en Diseño y Gestión de Procesos, Chía, Cundinamarca, Colombia. https://orcid.org/0009-0009-2505-4930
  • Ruth Yolanda Ruiz Pardo Universidad de La Sabana, Facultad de Ingeniería, Grupo de Investigación en Procesos Agroindustriales, Chía, Cundinamarca, Colombia. https://orcid.org/0000-0002-3634-5233
  • Fabian Leonardo Moreno Moreno Universidad de La Sabana, Facultad de Ingeniería, Grupo de Investigación en Procesos Agroindustriales, Chía, Cundinamarca, Colombia. https://orcid.org/0000-0002-9644-6749

DOI:

https://doi.org/10.25186/.v19i.2184

Abstract

In this work, the effect of the water-coffee ratio, time, and stirring speed, on the total soluble solids, extraction rate, titratable acidity, and extraction yield was evaluated for the percolation of coffee in a horizontal ribbon blender equipment. The coffee extract was obtained in a pilot unit at a constant temperature of 85°C and varying the water-coffee ratio from 4:1 to 10:1; the stirring speed between 30 and 95 RPM and the extraction time from 10 to 60 minutes. It was determined that the water-coffee ratio was the factor that had a significant influence on all the response variables, while time and stirring were significant for the extraction rate and titratable acidity. The optimal setup among the studied conditions was using a water temperature of 85°C, a water-coffee ratio of 4:1, and a stirring speed of 66 RPM for ten minutes. At these conditions, an extract of 5.85% TDS, 14.54% as yield, an extraction rate of 654.8 g/h, and a content of 5.62 mg of CGA/mL was obtained. Hence, this study presents an alternative process to obtain coffee extract in producing soluble coffee at a low industrial scale.

Key words: Chlorogenic acid; Extraction yield; Foods; Optimization; Soluble coffee.

References

ANGELONI, G. et al. What kind of coffee do you drink? An investigation on effects of eight different extraction methods. Food Research International, 116:1327-1335, 2019.

BATALI, M. E. et al. Titratable acidity, perceived sourness, and liking of acidity in drip brewed coffee. ACS Food Science & Technology, 1(4):559-569, 2021.

BATALI, M. E.; RISTENPART, W. D.; GUINARD, J. X. Brew temperature, at fixed brew strength and extraction, has little impact on the sensory profile of drip brew coffee. Scientific Reports, 10:16450, 2020.

BENINCÁ, C. et al. Pressure cycling extraction as an alternative to percolation for production of instant coffee. Separation and Purification Technology, 164:163-169, 2016.

CAPEK, P. et al. Coffea arabica instant coffee-chemical view and immunomodulating properties. Carbohydrate Polymers, 103:418-426, 2014.

CORDOBA, N. et al. Coffee extraction: A review of parameters and their influence on the physicochemical characteristics and flavour of coffee brews. Trends in Food Science & Technology, 96:45-60, 2020.

CORDOBA, N. et al. Chemical and sensory evaluation of cold brew coffees using different roasting profiles and brewing methods. Food Research International, 141:110141, 2021a.

CORDOBA, N. et al. Specialty and regular coffee bean quality for cold and hot brewing: Evaluation of sensory profile and physicochemical characteristics. LWT, 145:111363, 2021b.

DUEÑAS-RIVADENEIRA, A. et al. Determinación de las condiciones de extracción de compuestos fenólicos a partir de chuquiraga jussieuijf gmel usando la lixiviacion de muestras sólidas. Tecnología Química, 36(2):166-175, 2016.

FULLER, M.; RAO, N. Z. The effect of time, roasting temperature, and grind size on caffeine and CGA concentrations in cold brew coffee. Scientific Reports, 7(1):1-9, 2017.

GLOESS, A. N. et al. Comparison of nine common coffee extraction methods: instrumental and sensory analysis. European Food Research and Technology, 236(4):607-627, 2013.

GUINARD, J.-X. et al. A new coffee brewing control chart relating sensory properties and consumer liking to brew strength, extraction yield, and brew ratio. Journal of Food Science, 88(5):2168-2177, 2023.

INSTITUTO COLOMBIANO DE NORMAS TÉCNICAS - ICONTEC. NTC 2441:2011. Café torrado e moído. Método para determinação do tamanho médio de partícula por distribuição granulométrica. 2011. Bogotá D.C., Colombia. 2011.

INSTITUTO COLOMBIANO DE NORMAS TÉCNICAS - ICONTEC. Café tostado y molido. Método para la determinación del tamaño de partícula por distribución granulométrica (NTC 2441), pp. 1-9, Bogotá D.C., Colombia. 2011.

LINGLE, T. R. The coffee brewing handbook: A systematic guide to coffee preparation. Specialty Coffee Association of America. 2011

MESTDAG, F.; GLABASNIA, A.; GIULIANO, P. The brew. Extracting for excellence. In: FOLMER, B. (Ed.), The craft and Science of Coffee, Academic Press, p. 355-380, 2017.

MORONEY, K. M. et al. Coffee extraction kinetics in a well-mixed system. Journal of Mathematics in Industry, 7:3, 2016.

MUZYKIEWICZ-SZYMAŃSKA, A. et al. The effect of brewing process parameters on antioxidant activity and caffeine content in infusions of roasted and unroasted Arabica coffee beans originated from different countries. Molecules, 26(12):3681, 2021.

OCAMPO LOPEZ, O. L.; ALVAREZ-HERRERA, L. M. Tendencia de la producción y el consumo del café en Colombia. Apuntes del Cenes, 36(64):139-165, 2017.

RAO, N. Z.; FULLER, M. Acidity and antioxidant activity of cold brew coffee. Scientific Reports, 8:16-30, 2018.

SCHWARZMANN, E. T.; WASHINGTON, M. P.; RAO, N. Z. Physicochemical analysis of cold brew and hot brew peaberry coffee. Processes, 10(10):1989, 2022.

SULEWSKA, A et al. Advanced instrumental characterization of the coffee extracts produced by pilot scale instant coffee process. European Food Research and Technology, 247:1379-1387, 2021.

VEZZULLI, F. et al. Sensory profile of Italian espresso brewed arabica specialty coffee under three roasting profiles with chemical and safety insight on roasted beans. International Journal of Food Science & Technology, 56(12):6765-6776, 2021.

WANKAT, P. Separation process engineering: Includes mass transfer analysis. 5th. Pearson. 2022. 1167p.

ZHANG, L. et al. Extraction and physicochemical characteristics of high pressure-assisted cold brew coffee. Future Foods: A Dedicated Journal for Sustainability in Food Science, 5:100-113, 2022.

Downloads

Published

2024-07-03

How to Cite

BARRIGA, P. A. M. .; PARDO, R. Y. R. .; MORENO, F. L. M. Effect of extraction processing parameters using a ribbon blender on the physicochemical properties of coffee. Coffee Science - ISSN 1984-3909, [S. l.], v. 19, p. e192184, 2024. DOI: 10.25186/.v19i.2184. Disponível em: https://coffeescience.ufla.br/index.php/Coffeescience/article/view/2184. Acesso em: 14 oct. 2024.