Physicochemical characterization of coffee parchment of species Coffea arabica variety Castillo®
DOI:
https://doi.org/10.25186/.v19i.2182Abstract
Coffee parchment is one of the most abundant wastes from coffee processing in Colombia, representing 5.8% of dry weight of the berry. This waste has been scarcely characterized, then this work is a complete physicochemical characterization of coffee parchment of the species Coffea arabica variety Castillo®. The coffee parchment composition was studied, determining the fractions of cellulose (49 %), hemicellulose (21 %), lignin (28 %), and inorganics (3 %) presented. Also, FTIR analysis was made to explore the different functional groups of the constituent molecules and confirm their presence, likewise the thermal profile was determined to confirm the composition and explore the thermal stability of this waste. Crystallinity was determined by the Segal method using XRD. A morphological analysis by SEM and a granulometric analysis of this raw material is also presented. All these analyses are important for proposing alternative uses of coffee parchment, such as obtaining cellulose.
Key words: Coffee parchment; Compositional analysis; FTIR; XRD; TGA.
References
ABDUL KHALIL, H. P. S. et al. Cellulosic nanocomposites from natural fibers for medical applications: A review. In: PANDEY, J. K. et al. (Eds.) Handbook of polymer nanocomposites: processing, performance and application. Berlin, Heidelberg: Springer Berlin Heidelberg, p. 475-511, 2015.
ABUDULA, T. et al. Electrospun cellulose nano fibril reinforced PLA/PBS composite scaffold for vascular tissue engineering. Journal of Polymer Research, 26:110, 2019.
AHMED, S.; KANCHI, S.; KUMAR, G. Handbook of biopolymers: Advances and multifaceted applications. Temasek Boulevard, Singapur: Pan Stanfor Publishing Pte. Ltd., 2019. 322p.
ALVES, R. C. et al. State of the art in coffee processing by-products. In: GALANAKIS, C. M. Handbook of coffee processing by-products: Sustainable Applications. First ed. [s.l.] Elsevier Inc., p. 1-26, 2017.
ASTM. ASTM C702/C702M - 18: Standard practice for reducing samples of aggregate to testing size. West Conshohocken, PA, USA: ASTM International, 2018. Available in: https://www.astm.org/c0702_c0702m-18.html.Access in: March 12, 2024.
AWOYALE, A. A.; LOKHAT, D. Experimental determination of the effects of pretreatment on selected Nigerian lignocellulosic biomass in bioethanol production. Scientific Reports, 11:57, 2021.
BEKALO, S. A.; REINHARDT, H. W. Fibers of coffee husk and hulls for the production of particleboard. Materials and Structures/Materiaux et Constructions, 43(8):1049-1060, 2010.
BELGACEM, M. N.; PIZZI, A. Lignocellulosic fibers and wood handbook. First ed. Hoboken, NJ: John Wiley & Sons, Inc, 2016.
BENITEZ, V. et al. Coffee parchment as a new dietary fiber ingredient: Functional and physiological characterization. Food Research International, 122:105-113, 2019.
BENINI, K. C. C. C. et al. Characterization of a new lignocellulosic fiber from Brazil: Imperata brasiliensis (Brazilian Satintail) as an alternative source for nanocellulose extraction. Journal of Natural Fibers, 14(1):112-125, 2017.
FEDERACIÓN NACIONAL DE CAFETEROS DE COLOMBIA. Informe de gestión. 2020. Bogotá: [s.n.].
CASTILLO, M. D. del. et al. Applications of recovered compounds in food products. In: GALANAKIS, C. M. Handbook of coffee processing by-products. Elsevier Inc., p. 171-194 2017.
FERNÁNDEZ, Y.; MENÉNDEZ, J. A. Influence of feed characteristics on the microwave-assisted pyrolysis used to produce syngas from biomass wastes. Journal of Analytical and Applied Pyrolysis, 91(2):316-322, 2011.
FLAUZINO NETO, W. P. et al. Extraction and characterization of cellulose nanocrystals from agro-industrial residue - Soy hulls. Industrial Crops and Products, 42:480-488, 2013.
FRANCA, A.; OLIVEIRA, L. Chapter 8 Coffee processing solid wastes: Current uses and future perspectives. In: Geoffrey S. ASHWORTH, G. S.; AZEVEDO, P. Agricultural wastes. Nova Science Publishers, Inc. p. 155-189, 2009.
GAO, W. et al. Cellulose nanocrystals reinforced gelatin/bioactive glass nanocomposite scaffolds for potential application in bone regeneration. Journal of Biomaterials Science, Polymer Edition, 31(8):984-998, 2020.
GENG, W. et al. The influence of lignin content and structure on hemicellulose alkaline extraction for non-wood and hardwood lignocellulosic biomass. Cellulose, 26(5):3219-3230, 2019.
GEORGE, J.; SABAPATHI, S. N. Cellulose nanocrystals: Synthesis, functional properties, and applications. Nanotechnology, Science and Applications, 8:45-54, 2015.
GOPI, S. et al. General scenarios of cellulose and its use in the biomedical field. Materials Today Chemistry, 13:59-78, 2019.
HUANG, Y. et al. Lignin content of agro-forestry biomass negatively affects the resultant biochar pH. BioResources, 13(3):5153-5163, 2019.
HUGHES, S. R. et al. Sustainable conversion of coffee and other crop wastes to biofuels and bioproducts using coupled biochemical and thermochemical processes in a multi-stage biorefinery concept. Applied Microbiology and Biotechnology, 98(20):8413-8431, 2014.
IO MONACO, P. A. V. et al. Performance of filters made from parchment of coffee beans (Coffea sp.) for wastewater treatment. Coffee Science, 6(2):120-127, 2011.
ISLAM, M. S. et al. Potential aspect of rice husk biomass in Australia for nanocrystalline cellulose production. Chinese Journal of Chemical Engineering, 26(3):465-476, 2018.
JAWAID, M.; PARIDAH, M. T.; SABA, N. Lignocellulosic fibre and biomass-based composite materials: Processing, properties and applications. First ed. Cambridge, US: Woodhead publishing Elsevier Ltd, 2017.
JEGUIRIM, M.; LIMOUSY, L.; LABAKI, M. Chapter 9 - Environmental applications of coffee processing by-products. In: GALANAKIS, C. M. Handbook of coffee processing by-products. Elsevier Inc., p. 245-297, 2017.
JULIE CHANDRA, C. S.; GEORGE, N.; NARAYANANKUTTY, S. K. Isolation and characterization of cellulose nanofibrils from arecanut husk fibre. Carbohydrate Polymers, 142:158-166, 2016.
KALE, R. D.; GETACHEW ALEMAYEHU, T.; GORADE, V. G. Extraction and characterization of lignocellulosic fibers from Girardinia Bullosa (Steudel) Wedd. (Ethiopian Kusha Plant). Journal of Natural Fibers, 17(6):906-920, 2020.
KANG, X. et al. Green preparation of cellulose nanocrystal and its application. ACS Sustainable Chemistry and Engineering, 6(3):2954-2960, 2018.
KAZA, S. et al. What a waste 2.0: A global snapshot of solid waste management to 2050. 1. ed. Whashington DC: International Bank for Reconstruction and Development The World Bank, 2018. 302p.
KHATTAK, S. et al. Applications of cellulose and chitin/chitosan derivatives and composites as antibacterial materials: Current state and perspectives. Applied Microbiology and Biotechnology, 103(5):1989-2006, 2019.
LIM, C. J. et al. Mercerizing extraction and physicochemical characterizations of lignocellulosic fiber from the leaf waste of mikania micrantha Kunth ex H.B.K. Journal of Natural Fibers, 17(5):726-737, 2020.
LINDNER, B. et al. Determination of cellulose crystallinity from powder diffraction diagrams. Biopolymers, 103(2):67-73, 2015.
MILLER, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3):426-428, 1959.
MIRÓN-MÉRIDA, V. A. et al. Valorization of coffee parchment waste (Coffea arabica) as a source of caffeine and phenolic compounds in antifungal gellan gum films. LWT, 101:167-174, 2019.
MO, Y. et al. Preparation and properties of PLGA nanofiber membranes reinforced with cellulose nanocrystals. Colloids and Surfaces B: Biointerfaces, 132:177-184, 2015.
MOSIER, N. et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96(6):673-686, 2005.
NAJEEB, M. I. et al. Characterization of lignocellulosic biomass from malaysian’s yankee pineapple AC6 toward composite application. Journal of Natural Fibers, 18(12):2006-2008, 2021.
REIS, R. S. et al. Characterization of coffee parchment and innovative steam explosion treatment to obtain microfibrillated cellulose as potential composite reinforcement. Journal of Materials Research and Technology, 9(4):9412-9421, 2020.
RUSO, J. M.; MESSINA, P. V. Biopolymers for medical applications. Boca Raton, FL: Taylor & Francis Group, LLC, 2017. 372p.
SEGAL, L. et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Textile Research Journal, 29(10):786-794, 1959.
SHARMA, A. et al. Commercial application of cellulose nano-composites: A review. Biotechnology Reports, 21:e00316, 2019.
SHARMA, S.; NANDAL, P.; ARORA, A. Ethanol production from NaOH pretreated rice straw: A cost effective option to manage rice crop residue. Waste and Biomass Valorization, 10(11):3427-3434, 2019.
SILVERSTEIN, R. M.; WEBSTER, F. X.; KIEMLE, D. J. Spectrometric identification of organic compounds. Seventh ed. New York, NY: John Wiley & Sons, Inc., 2005.
SLUITER, A. et al. Determination of total solids in biomass and total dissolved solids in liquid process samples: Laboratory Analytical Procedure (LAP). Golden, Colorado: 2008a. Available in: <https://www.nrel.gov/docs/gen/fy08/42621.pdf>. Access in: March 6, 2024.
SLUITER, A. et al. Determination of extractives in biomass laboratory analytical procedure (LAP) Issue Date: 7/17/ 2005. Determination of Extractives in Biomass Laboratory Analytical Procedure (LAP). n. January, 2008b.
SLUITER, A. et al. Determination of Extractives in Biomass Laboratory Analytical Procedure (LAP). Golden, Colorado: 2005b. Disponível em: <https://www.nrel.gov/docs/gen/fy08/42619.pdf>.
SOUZA, A. L. et al. Valor nutritivo de silagem de capim-elefante (Pennisetum purpurem Schum.) com diferentes níveis de casca de café (Nutritive value of Pennisetum purpurem Schum. sillage with different levels of coffee husks). Revista Brasileira de Zootecnia, 32(4):828-833, 2003.
SUAREZ, J. A. et al. Coffee husk briquettes: A new renewable energy source. Energy Sources, 25(10):961-967, 2003.
THASSITOU, P. K.; ARVANITOYANNIS, I. S. Bioremediation: A novel approach to food waste management. Trends in Food Science and Technology, 12(5-6):185-196, 2001.
THOMPSON, L. et al. Cellulose nanocrystals: Production, functionalization and advanced applications. Reviews on Advanced Materials Science, 58(1):1-16, 2019.
THYGESEN, A. et al. On the determination of crystallinity and cellulose content in plant fibres. Cellulose, 12(6):563-576, 2005.
VERRAN, J. et al. Using soxhlet ethanol extraction to produce and test plant material (Essential Oils) for their antimicrobial properties. Journal of Microbiology & Biology Education, 15(1):45-46, 2014.
WERTZ, J.-L.; BÉDUÉ, O.; MERCIER, J. P. Cellulose science and technology. First ed. Lausanne, Switzerland: CRC/Taylor & Francis, 2010.
WONDEMAGEGNEHU, E. B.; GUPTA, N. K.; HABTU, E. Coffee parchment as potential biofuel for cement industries of Ethiopia. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(2):5004-5015, 2019.
YAN, D. et al. Surface modified electrospun poly (lactic acid) fibrous scaffold with cellulose nanofibrils and Ag nanoparticles for ocular cell proliferation and antimicrobial application. Materials Science and Engineering C, 111:110767, 2020.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Coffee Science - ISSN 1984-3909Os direitos autorais dos artigos publicados nesta revista pertencem aos autores, com os primeiros direitos de publicação pertencentes à revista. Como os artigos aparecem nesta revista com acesso aberto, eles podem ser usados livremente, com as devidas atribuições, em aplicativos educacionais e não comerciais.