Carbon footprint and carbon storing capacity of arabica coffee plantations of Central America: A review




Knowing the carbon footprint of agricultural systems will allow us to create mitigation and carbon capture strategies to mitigate environmental impacts. Here we reviewed the available literature about the carbon footprint associated with the cultivation of Arabica coffee in Central America region, ranging from traditional polycultures to unshaded monocultures. Subsequently, we reviewed the carbon storage data about different C stocks of a coffee plantation (i.e. living biomass, litter and soil). Finally, actions to mitigate emissions at the farm level are suggested. The major findings of this review were: i) the carbon footprints vary from 0.51 kg CO2eq/kgcherry coffee in traditional polycultures to 0.64 kg CO2eq/kgcherry coffee in unshaded monocultures. ii) Nitrogen
fertilization is the main factor contributing to the carbon footprint. iii) The amount of carbon stored in living biomass varies from 53.6 Mg/ha in traditional polycultures to 9.7 Mg/ha in unshaded monocultures. The adequate use of fertilizers, periodic monitoring of soil fertility, the incorporation of functional trees (e.g. shade trees and/or nitrogen fixers) to plantations, soil conservation practices and the use of biofertilizers are some of the recommended actions to mitigate the carbon footprint associated with coffee plantations.
Key words: Coffea arabica; carbon dioxide; nitrous oxide; climate change; carbon sequestration.


ALHAJJ, A. S. et al. Effect of different crop management on rainfed durum wheat greenhouse gas emissions and carbon footprint under Mediterranean conditions. Journal of Cleaner Production, 140(2):608-621, 2016.

ANDRADE, H. J. et al. The carbon footprint of coffee production chains in Tolima, Colombia. In: OELBERMANN, M. (ed.) Sustainable agroecosystems in climate change mitigation. Wageningen Academic Publishers, p. 53-66, 2014.

AVELINO, J. et al. The coffee rust crises in Colombia and Central America (2008-2013): Impacts, plausible causes and proposed solutions. Food Security, 7:303-321, 2015.

BACA, M. et al. An integrated framework for assessing vulnerability to climate change and developing adaptation strategies for coffee growing families in mesoamerica. PLoS ONE, 9(2):e88463, 2014.

BOUWMAN, A. F.; BOUMANS, L. J. M. Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Global Biogeochemical Cycles, 16(4):1058, 2022.

BUNN, C. et al. A bitter cup: Climate change profile of global production of Arabica and robusta coffee. Climatic Change,129:89-101, 2015.

BUNN, C. Climate smart coffee in Guatemala. International Center for Tropical Agriculture, (CIAT) Cali, CO. 2019. 28p.

CAPA, D.; PÉREZ-ESTEBAN, J.; MASAGUER, A. Unsustainability of recommended fertilization rates for coffee monoculture due to high N2O emissions. Agronomy for Sustainable Development, 35:1551-1559, 2015.

CASTILLO, E. et al. Effect of Arachis pintoi introduction on soil variables in native grass pastures in the Mexican humid tropics. Técnica Pecuaria en México, 43(2):287-295, 2005.

CÁMARA DE DIPUTADOS LXIII LEGISLATURACEDRSSA. El café en México diagnóstico y perspectiva. 2018. Available in: <

perspectiva.pdf>. Access in: May 31, 2023.

CERDA, R. et al. Effects of shade, altitude and management on multiple ecosystem services in coffee agrosystems. European Journal of Agronomy, 82B:308-319, 2017.

DE JONG, B. H. et al. Land-use change and carbon flux between 1970s and 1990s in Central Highlands of Chiapas, Mexico. Environmental Management, 23(3):373-385, 1999.

ESCAMILLA, E. Las variedades de café en México ante el desafío de la roya del café. Breves de Políticas Públicas 4. Available in:<>. Access in: May 31, 2023.

DE BEENHOUWER, M. et al. A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agriculture, Ecosystem and Environment,175:1-7, 2013.

GAY, C. et al. Potential impacts of climate change on agriculture: A case of study of coffee production in Veracruz, Mexico. Climatic Change, 79:259-288, 2006.

GOBERNACIÓN DE TOLIMÁ. Caficultura tolimense recibe millonario impulso para renovación y nuevas plantaciones. 2021. Available in: .

Access in: May 31, 2023.

GOODALL, K. E.; BACON, C. M.; MENDEZ, V. E. Shade tree diversity, and epiphyte presence in coffee agroecosystems: A decade of smallholder management in San Ramón, Nicaragua. Agriculture, Ecosystems & Environment, 199:200-206, 2014.

HALL, S. J.; MATSON, P. A. Nitrogen oxide emissions after nitrogen additions in tropical forest. Nature, 400:152-155, 1999.

HERGOUALC’H, K. et al. Processes responsible for the nitrous oxide emission from a Costa Rican Andosol under a coffee agroforestry plantation. Biology and Fertility of Soils, 43:787-795, 2007.

HERGOUALC’H, K. et al. Fluxes of greenhouse gases from Andosols under coffee in monoculture or shaded by Inga densiflora in Costa Rica. Biogeochemistry, 89:329-345, 2008.

HUGHES, R. F.; KAUFMAN, J. B.; JARAMILLO, V. J. Ecosystem-scale impacts of deforestation and land use in a humid tropical region of Mexico. Ecological Applications, 10(2): 515-527, 2000.

INSTITUTO DEL CAFÉ DE COSTA RICA - ICAFE. Informe sobre la actividad cafetalera de Costa Rica. 2017. Available in: 2017. Access in: May 31, 2023.

INTERNATIONAL COFFEE ORGANIZATION - ICO. Rules on statistics statistical reports. 2011. Available in: <>. Access in: May 31, 2023.

INTERNATIONAL COFFEE ORGANIZATION - ICO. Identifying coffee sector challenges in selected Central

American countries and Mexico. 2018.Available in: <>. Access in: May 31, 2023.

INTERNATIONAL COFFEE ORGANIZATION - ICO. Nota relativa al examen de datos estadísticos publicados por la OIC. 2020. Available in:<>. Access in: May 31, 2023.

INSTITUTO HONDURENHO DO CAFÉ - IHCAFE. Memoria cosecha. 2017.>. Access in: May 31, 2023.

INTERNATIONAL PANEL OF CLIMATE CHANGE - IPCC. IPCC updates methodology for greenhouse gas inventories. 2019. Available in:<>. Access in: May 31, 2023.

KILLIAN, B. et al. Carbon footprint across the coffee supply chain: The case of Costa Rican coffee. Journal of Agricultural Science and Technology, 3:151-170, 2013.

KUMAR, A. et al. Rhizophagus irregularis and nitrogen fixing azotobacter enhances greater yam (Dioscorea alata) biochemical profile and upholds yield under reduced fertilization. Saudi Journal of Biological Sciences, 29:3694-3703, 2022.

LADERACH, P. et al. Predict impact of climate change on coffee supply chains. In: WALTER, L. F. (ed). The economic, social and political elements of climate change. Heidelberg: Springer-Verlag, p. 703-723, 2011.

LEBLANC, H. A.; MCGRAW, R. L. Evaluation of Inga edulis and I. samanensis for firewood and green-mulch production in and organic maize alley-cropping practice in the humid tropics. Tropical Agriculture, 81(1):1-7, 2004.

LEBLANC, H. A.; MCGRAW, R. L.; NYGREN, P. Dinitrogen-fixation by three neotropical agroforestry tree species under semi-controlled field conditions. Plant Soil, 291:199-209, 2007.

MARTINS, L. D. et al. Carbon and water footprints in Brazilian coffee plantations: The spatial and temporal distribution. Emirates Journal of Food and Agriculture, 30(6):482-487, 2018.

MAGRACH, A.; GHAZOUL, J. Climate and pestdriven geographic shifts in global coffee production: Implications for forest cover, biodiversity and carbon storage. Plos One, 10(7):e0133071, 2015.

MEYLAN, L. et al. Evaluating the effect of shade trees on provision of ecosystem services in intensively managed coffee plantations. Agriculture, Ecosystems & Environment, 245:32-42, 2017.

MILLAR, N. et al. Nitrogen fertilizer Management for nitrous oxide (N2O) mitigation in intensive corn (Maize) production: an emission reduction protocol for US Midwest agriculture. Mitigation and Adaptation Strategies for Global Change, 15:185-204, 2010.

NOPONEN, M. R. A. et al. Greenhouse gas emissions in coffee grown with differing input levels under conventional and organic management. Agriculture, Ecosystems & Environment, 151:6-15, 2012.

ORTIZ-CEBALLOS, G. C. et al. Aboveground carbon storage in coffee agroecosystems: The case of the central region of the state of Veracruz. Agronomy, 10(3):382, 2020.

PINOARGOTE, M. et al. Carbon stocks, net cash flow and family benefits from four small coffee plantation types in Nicaragua. Forests, Trees and Livelihoods, 26(3):183-198, 2016.

PERFECTO, I. et al. Biodiversity, yield, and shade coffee certification. Ecological Economics, 54:435-446, 2005.

PETERS, V. E.; CARROLL, C. R. Temporal variation in coffee flowering may influence the effects of bee species richness and abundance on coffee production. Agroforestry Systems, 85:95-103, 2012.

PHILPOTT, S. M. et al. Biodiversity loss in Latin American coffee landscapes. Conservation Biology, 22(5):1093-1105, 2008.

RAHN, E. et al. Climate change adaptation, mitigation and livelihood benefits in coffee production: where are the synegies?. Mitigation and Adaptation Strategies for Global Change, 19:1119-1137, 2014.

RATCHAWAT, T. et al. Carbon and water footprint of robusta coffee through its production chains in Tailand. Environment, Development, 22:2415-2429, 2020.

RICHARDS, M. B.; MÉNDEZ, V. E. Interactions between carbon sequestration and shade tree diversity in a smallholder coffee cooperative in El Salvador. Conservation Biology, 28(2):489-497, 2013.

RODRIGUEZ, P.; MORA-DELGADO, J. Configuración histórica del conflicto en la zona cafetera del norte del Tolima. In: MORA-DELGADO, J.; GÓMEZ, M. J.; RODRIGUEZ, P. Retrospectiva del café en Mesoamérica y Colombia análisis de casos. Ibagué, Colombia: Editorial

Universidad de Tolima, p. 157-180, 2019.

SANTOS, V. P.; RIBEIRO, P. C. C.; RODRIGUEZ, L. B. Sustainability assessment of coffee production in Brazil. Environmental Science and Pollution Research, 30:11099-11118, 2023.

SCHROTH, G. et al. Towards a climate change adaptation strategy for coffee communities and ecosystems in the Sierra Madre de Chiapas, Mexico. Mitigation and Adaptation Strategies for Global Change, 14:605-625, 2009.

SCHMITT-HARSH, M. et al. Carbon stocks in coffee agroforest and mixed dry tropical forest in the western highlands of Guatemala. Agroforestry Systems, 86:141-157, 2012.

SHARMA, M. et al. Rhizophagus irregularis and nitrogen fixing azotobacter with a reduced rate of chemical fertilizer applications enhances pepper growth along with fruits biochemical and mineral composition. Sustainability, 14:5653, 2022.

SINGH, P.; BENBI, D. K. Soil organic carbon pool changes in relation to slope position and land-use in Indian lower Himalayas. CATENA, 166:171-180, 2018.

SOTO-PINTO, L. et al. Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agroforestry Systems, 78:39-51, 2010.

SOTO-PINTO, L; AGUIRRE-DÁVILA, C. M. Carbon stocks in organic coffee systems in Chiapas, Mexico. Journal of Agricultural Sciences, 7(1):117-128, 2015.

TEKETAY, D. History, botany and ecological requirements of coffee. Walia, 20:28-50, 1999.

VAAST, P.; ZASOSKI, R. J. Effects of VA-mycorrhizae and nitrogen sources on rhizosphere soil characteristics, growth and nutrient acquisition of coffee seedlings (Coffea arabica L.). Plant and Soil, 147:31-39, 1992.

VAN RIKXOORT, H. et al. Carbon footprints and carbon stocks reveal climate-friendly coffee production. Agronomy for Sustainable Development, 34:887-897, 2014.

VELTHOF, G. L. et al. Effects of type and amount of applied nitrogen fertilizer on nitrous oxide fluxes from intensively managed grassland. Nutrient Cycling in Agroecosystems, 46:257-267, 1997.

VIEIRA, F. H. et al. Effects of mycorrhizal association and phosphate fertilization on the initial growth of coffee plants. Pesquisa Agropecuaria Tropical, 50:e58646, 2020.




How to Cite

ARELLANO, C.; HERNÁNDEZ, C. Carbon footprint and carbon storing capacity of arabica coffee plantations of Central America: A review. Coffee Science - ISSN 1984-3909, [S. l.], v. 18, p. e182072, 2023. DOI: 10.25186/.v18i.2072. Disponível em: Acesso em: 27 may. 2024.



Article Review