Histochemical approach of the mobilization of reserve compounds in germinating coffee seeds

Authors

Keywords:

Coffea arabica, germination, storage breakdown, histochemistry, seed anatomy

Abstract

The endosperm of coffee beans is an important structure which is composed of different reserve compounds. In the present work, we followed anatomical features during the reserve mobilization of Coffea arabica L. ‘Catuaí’ seed samples, harvested at 20 different sites, after 0, 3, 6, 12, 24, 33 and 45 days of imbibition. Seed samples were properly fixed and stored, respectively, for histochemical and enzyme activity approach. Fixed samples were cross-sectioned for detection of starch, lipids, essential oils, oleoresins, proteins, phenolic compounds, neutral polysaccharides, alkaloids, β-1,3 and β-1,4 glucans, and lignin. Overall, based on histochemical tests and enzyme activity, seed reserve mobilization was similar among the evaluated altitudes and mountainsides. During soaking, there is an intense consumption of reserve compounds, starting at the region close to the embryo. Reserve mobilization intensifies after root protrusion, from 12 days of soaking. The intensification of the reserve consumption is concomitant with an increased activity of MDH is observed at the first 12 days, whereas SOD showed higher expression after 33 days of soaking. At the 33rd day, little reserve is observed in the endosperm. At 45th day, cotyledon leaves are expanded, and the root system, constituted by the taproot and lateral roots, is well established.

Key words: Coffea arabica; germination; reserve breakdown; histochemistry; seed anatomy.

References

ALKHALFIOUI, F.; RENARD, M.; VENSEL, W. H. Thioredoxin-linked proteins are reduced during germination of Medicago truncatula seeds. Plant Physiology, 144:1559-1579, 2007.

ALMEIDA, J. A. S. D. et al. Water stress in germination, growth and development of coffee cultivars. Journal of Seed Science, 40(1):82-89, 2018.

ANAND, A. et al. Hydrogen peroxide signaling integrates with phytohormones during the germination of magnetoprimed tomato seeds. Scientific Reports, 9(1):1-11, 2019.

ARCILA-PULGARÍN, J. et al. Application of the extended BBCH scale for the description of the growth stages of coffee (Coffea spp.). Annals of Applied Biology, 141(1):19-27, 2002.

ASSIS, J. G. R. et al. Expression of Enzymes During the Germination of Seeds in Endangered Cerrado Species. Journal of Agricultural Science, 11(6):1-11,2019.

BARROS-GALVÃO, T.; VAISTIJ, F. E.; GRAHAM, I. A. Control of seed coat rupture by ABA-INSENSITIVE 5 in Arabidopsis thaliana. Seed Science Research, 29(2):143-148, 2019.

BEWLEY, J. D. et al. Seeds: physiology of development, germination and dormancy. (392 p). 3rd ed., New York Springer, 2013.

BICALHO, E. M. et al. Enzyme activity and reserve mobilization during Macaw palm (Acrocomia aculeata) seed germination. Acta Botanica Brasilica, 30(3):438-444, 2016.

BORGES, E. E. L. et al. Alterações fisiológicas e atividade enzimática em sementes armazenadas de Melanoxylon brauna Schott. Cerne, 21(1):75-81, 2015.

BRASIL, Ministério da Agricultura e da Reforma Agrária. Regras para análise de sementes. Brasília, 2009. 398p.

BRUNDRETT, M. C.; KENDRICK, B.; PETERSON, C. A. Efficient lipid staining in plant material with sudan red 7B or fluoral yellow 088 in polyethylene glycol-glycerol. Biotechnic & Histochemistry, 66(3):111-116, 1991.

CALDERÓN, A.; SEVILLA, F.; JIMÉNEZ, A. Redox protein thioredoxins: function under salinity, drought and extreme temperature conditions. In Antioxidants and Antioxidant Enzymes in Higher Plants, (pp. 123-162). Springer, Cham, 2018.

CARRERA-CASTAÑO, G. et al. An Updated Overview on the Regulation of Seed Germination. Plants, 9(6):703, 2020.

CARVALHO, A. M. C.; GUIMARÃES, R. M.; SILVA, T. T. A. Condicionamento fisiológico em matriz sólida de sementes de café (Coffea arabica L.) com e sem pergaminho. Revista Brasileira de Sementes, 34(1):094-098, 2012.

CLIFFORD, M. N. Chlorogenic Acids. In: CLARKE R. J., MACRAE R. Coffee (pp. 153-202), Vol 1. Springer, Dordrecht, 1985.

DA ROSA, S. D. V. F. et al. Staging coffee seedling growth: a rationale for shortening the coffee seed germination test. Seed Science and Technology, 38(2):421-431, 2010.

DA SILVA, E. A. A. et al. Exogenous gibberellins inhibit coffee (Coffea arabica cv. Rubi) seed germination and cause cell death in the embryo. Journal of Experimental Botany, 56(413):1029-1038, 2005.

DA SILVA, E. A. A. et al. ABA Inhibits Embryo Cell Expansion and Early Cell Division Events During Coffee (Coffea arabica ‘Rubi’) Seed Germination. Annals of Botany, 102(3):425-433, 2008.

DA SILVA, E. A. A. D. et al. Gene expression during the germination of coffee seed. Journal of Seed Science, 41(2):168-179, 2019.

DAVID, R.; CARDE, J. P. Coloration différentielle dês inclusions lipidique et terpeniques dês pseudophylles du Pin maritime au moyen du reactif Nadi. Comptes Rendus Hebdomadaires dês Séances de l’Academie dês Sciences Paris. Série D 258, p. 1338-1340, 1964.

DEDECCA, D. M. Anatomia e desenvolvimento ontogenético de Coffea arabica L. var. Typica Cramer. Bragantia, 16:315-355, 1957.

EIRA, M. T. et al. Coffee seed physiology. Brazilian Journal of Plant Physiology, 18(1):149-163, 2006.

FARIAS, E. T. et al. Expression studies in the embryo and in the micropylar endosperm of germinating coffee (Coffea arabica cv. Rubi) seeds. Plant Growth Regulation, 75(2):575-581, 2015.

FERREIRA, V. F. et al. Endo-β-mannanase enzyme activity in the structures of Coffea arabica L. seeds under different types of processing and drying. Ciência Rural, 48(12):e20170839, 2018.

FISHER, D. B. Protein staining of ribboned epon sections for light microscopy. Histochemie, 16(1):92-96, 1968.

FURR, M.; MAHLBERG, G. Histochemical analyses of laticifers and glandular trichomes in Cannabis sativa. Journal of Natural Products, 44(2):153-159, 1981.

GOMES, M. P.; GARCIA, Q. S. Reactive oxygen species and seed germination. Biology, 68(3):351-357, 2013.

GOULART, P. F. P. et al. Aspectos histoquímicos e morfológicos de grãos de café de diferentes qualidades. Ciência Rural, 37(3):662-666, 2007.

HÄGGLUND, P. et al. Seed thioredoxin h. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1864(8):974-982, 2016.

HE, Y. et al. Glyoxylate cycle and reactive oxygen species metabolism are involved in the improvement of seed vigor in watermelon by exogenous GA3. Scientia Horticulturae, 247:184-194, 2019.

HEBER, U. Metabolite exchange between chloroplasts and cytoplasm. Annual Review of Plant Physiology, 25(1):393-421, 1974.

HUGHES, J.; MCCULLY, M. E. The use of an optical brightener in the study of plant structure. Stain Technology, 50(5):1037-1041, 1975.

IBRAHIM, E. A. A. Fundamental Processes Involved in Seed Priming. In: HASANUZZAMAN, M.; FOTOPOULOS, V. Priming and Pretreatment of Seeds and Seedlings (pp. 63-115). Springer, Singapore, 2019.

JIA, M. X. et al. CAT and MDH improve the germination and alleviate the oxidative stress of cryopreserved Paeonia and Magnolia pollen. Acta Physiologiae Plantarum, 40(2):37, 2018.

JOHANSEN, D. A. Plant microtechnique. New York, McGraw-Hill, 1940. 523p.

KALEMBA, E. M.; RATAJCZAK, E. The effect of a doubled glutathione level on parameters affecting the germinability of recalcitrant Acer saccharinum seeds during drying. Journal of Plant Physiology, 223:72-83, 2018.

KRAUS, J. E.; ARDUIN, M. Manual básico de métodos em morfologia vegetal. Rio de Janeiro EDUR, 1997. 198p.

LECHOWSKA, K. et al. New insight on water status in germinating Brassica napus seeds in relation to priming-improved germination. International Journal of Molecular Sciences, 20(3):540, 2019.

MAJUMDAR, A.; KAR, R. K. Orchestration of Cu-Zn SOD and class III peroxidase with upstream interplay between NADPH oxidase and PM H+-ATPase mediates root growth in Vigna radiata (L.) Wilczek. Journal of Plant Physiology, 232:248-256, 2019.

MENG, Y. et al. Karrikins: regulators involved in phytohormone signaling networks during seed germination and seedling development. Frontiers in Plant Science, 7:2021, 2017.

MONTRICHARD, F. et al. Role of thioredoxins and NADP‐thioredoxin reductases in legume seeds and seedlings. The Model Legume Medicago truncatula, 80-91. 2019.

O’BRIEN, T. P.; MCCULLY, M. E. The study of plant structure: principles and selected methods. Melbourne, Termarcarphi PTY. LTD, 1981. 357p.

O’BRIEN, T.; FEDER, N.; MCCULLY, M. E. Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma, 59:367-373, 1964.

OTEGUI, M. S. et al. The Proteolytic Processing of Seed Storage Proteins in Arabidopsis Embryo Cells Starts in the Multivesicular Bodies. The Plant Cell, 18(10):2567-2581, 2006.

REIS, L. P.; SOUZA, G. A. D.; BRITO, D. S. Relationships between substrate and the mobilization of reserve with temperature during seed germination of Ormosia coarctata Jack. Journal of Seed Science, 42:e202042017, 2020.

REIS, P. R. et al. Manejo integrado das pragas do cafeeiro. In: REIS, P. R.; CUNHA, R. L. Café arábica: do plantio à colheita. EPAMIG Sul de Minas, Lavras, pp. 573-688, 2010.

ROUSTAN, V. et al. Protein sorting into protein bodies during barley endosperm development is putatively regulated by cytoskeleton members, MVBs and the HvSNF7s. Scientific Reports, 10(1):1-19, 2020.

SELMAR, D. et al. Germination of coffee seeds and its significance for coffee quality. Plant Biology, 8(2):260-264, 2006.

SOUSA, F. D. et al. Physicochemical Properties of Edible Seed Hemicelluloses. Open Access Library Journal, 4(6):1-14, 2017.

SOUZA, G. A. et al. Morpho-anatomical, physiological and biochemical changes in rubber tree seeds. Anais da Academia Brasileira de Ciências, 90(2):1625-1641, 2018.

TUNES, L. M. D. et al. Influência dos diferentes períodos de colheita na expressão de isoenzimas em sementes de cevada. Revista Ceres, 58(2):178-184, 2011.

VERHERTBRUGGEN, Y. et al. Challenging the putative structure of mannan in wheat (Triticum aestivum) endosperm. Carbohydrate Polymers, 224:e115063, 2019.

WALTERS, D. M.; ARENDT, E. K.; MORONI, A. V. Overview on the mechanisms of coffee germination and fermentation and their significance for coffee and coffee beverage quality. Critical Reviews in Food Science and Nutrition, 57(2):259-274, 2017.

WATERS, D. M.; ARENDT, E. K.; MORONI, A. V. Overview on the mechanisms of coffee germination and fermentation and their significance for coffee and coffee beverage quality. Critical Reviews in Food Science and Nutrition, 57(2):259-274, 2017.

XIN, X. et al. Reduced mitochondrial and ascorbate–glutathione activity after artificial ageing in soybean seed. Journal of Plant Physiology, 171(2):140-147, 2014.

YIN, G. et al. Comprehensive mitochondrial metabolic shift during the critical node of seed ageing in rice. PloS One, 11(4):e0148013, 2016.

ZAIN, M. Z. M.; SHORI, A. B.; BABA, A. S. Composition and Health Properties of Coffee Bean. European Journal of Clinical and Biomedical Sciences, 3(5):97-100, 2017.

ZHANG, Y.; CHEN, B.; XU, Z. Involvement of reactive oxygen species in endosperm cap weakening and embryo elongation growth during lettuce seed germination. Journal of Experimental Botany, 65(12):3189-3200, 2014.

ZONTA, J. B. et al. Teste lercafé para sementes de cafeeiro com diferentes teores de água. Revista Brasileira de Sementes, 32(1):17-23, 2010.

Published

2020-08-20

How to Cite

OLIVEIRA, L. A.; DE SOUZA, G. A.; SILVA, B. T.; ROCHA, A. A. G.; PICOLI, E. A. DE T.; PEREIRA, D. DE S.; DONZELES, S. M. L.; RIBEIRO, M. DE F.; PINTO MARQUES FERREIRA, W. . Histochemical approach of the mobilization of reserve compounds in germinating coffee seeds. Coffee Science - ISSN 1984-3909, v. 15, p. e151704, 20 Aug. 2020.