COFFEE WASTE BIOCHAR: CHARACTERIZATION AND ZINC ADSORPTION FROM AQUEOUS SOLUTION

Lindiamara Sertoli, Ruan Carnier, Cleide Aparecida de Abreu, Aline Renée Coscione, Leônidas Carrijo Azevedo Melo

Abstract


The final disposal of organic wastes has become a major challenge with increasing industrialization and population growth. Coffee wastes are examples of this, thus the conversion of these biomasses into biochar through pyrolysis could provide economic and environmental benefits, such as remediation of heavy metal polluted water. Therefore, in this work, biochar produced at 700 °C from spent coffee grounds and coffee parchment were evaluated for Zn removal from aqueous solution. Batch adsorption tests were performed with six Zn concentrations and four replicates for each material. The desorption process was performed sequentially with a pH 4.9 buffer acetic acid solution. Langmuir and Freundlich isotherms were fitted to the adsorption data using non-linear models. Batch adsorption tests showed that the adsorption was strongly dependent on biochar properties. Biochar prepared from coffee parchment was more effective at Zn binding, showing the highest adsorption capacity (0.792 mg g-1). Nevertheless, both biochars bounded Zn strongly and the adsorption process was not easily reversed.

Keywords


Heavy metal, coffee waste, recycling, remediation.

Full Text:

PDF

References


ADAMS, M.; GHARLY, A. E. Maximizing sustainability of the Costa Rican coffee industry. Journal of Cleaner Production, v. 15, n. 17, p. 1716-1729, 2007.

ALMAROAI, Y. A.; USMAN, A. R. A.; AHMAD, M.; MOON, D. H.; CHO, J. S.; JOO, Y. K.; JEON, C.; LEE, S. S.; OK, Y. S. Effects of biochar, cow bone, and eggshell on Pb availability to maize in contaminated soil irrigated with saline water. Environmental Earth Sciences, v.71, n. 3, p.1289-1296, 2014.

ARAÚJO, C. S. T.; ALMEIDA, I. L. S.; REZENDE, H. C.; MARCIONILIO, S. M. L. O.; LÉON, J. J. L.; MATOS, T. N. Elucidation of mechanism involved in adsorption of Pb(II) onto lobeira fruit (Solanum lycocarpum) using Langmuir, Freundlich and Temkin isotherms. Microchemical Journal, v. 137, p. 348-354, 2018.

ATABANI, A. E.; MERCIMEK, S. M.; ARVINDNARAYAN, S.; SHOBANA, S.; KUMAR, G.; CADIR, M.; AL-MUHATSEB, A. H. Valorization of spent coffee grounds recycling as a potential alternative fuel resource in Turkey: An experimental study. Journal of the Air & Waste Management Association, v. 68, n. 3, p. 196-214, 2018.

BANIK, C.; LAWRINENKO, M.; BAKSHI, S.; LAIRD, D. A. Impact of pyrolysis temperature and feedstock on surface charge and functional group chemistry of biochars. Journal of Environmental Quality, v. 47, p. 452-461, 2018.

BEESLEY, L. et al. A review of biochars potential role in the remediation, revegetation and restoration of contaminated soils. Environmental Pollution, v.159, p.3269-3282, 2011.

BIBAR, M. P. S. Potencial agrícola de biocarvões provenientes de biomassas alternativas. 2014. 115f. Dissertação (Mestrado em Agricultura Tropical e Subtropical) - Instituto Agronômico, Campinas.

BOGUSZ, A.; OLESZCZUK, P.; DOBROWOLSKI, RYSZARD.

Application of laboratory prepared and commercially avaiable biochars to adsorption of cádmium, copper and zinc ions from water. Bioresource Technology, v. 196, p 540-549, 2015.

BORBA, L. L.; CUBA, R. M. F.; TERÁN, F. J. C.; CASTRO, M. N.; MENDES, T. A. Use of Adsorbent Biochar from Pequi (Caryocar Brasiliense) Husks for the Removal of Commercial Formulation of Glyphosate from Aqueous Media. Engineering, Technology and Techniques, v. 62, 2019.

BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa n° 17/2007, de 21 de maio de 2007. Aprova os Métodos Analíticos Oficiais para Análise de Substratos e Condicionadores de Solos, na forma do Anexo à presente Instrução Normativa. DOU de 24/05/2007.

BRUNAUER, S.; EMMET, P. H.; TELLER, E. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, v. 60, n. 2, p. 309-319, 1938.

CHEN, X.; CHEN, G.; CHEN, L.; CHEN, Y.; LEHMANN, J.; MCBRIDE, M. B.; HAY, A. G. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology, v. 102, p. 8877-8884, 2011.

Companhia Nacional de Abastecimento (CONAB). Indicador agropecuário: fechamento de edição. Brasília, 2016. 100 p.

Conselho Nacional Do Meio Ambiente (CONAMA). Resolução n° 375/2006, de 29 de agosto de 2006. Define critérios e procedimentos para uso agrícola de lodos de esgoto gerados em estações de tratamento de esgoto sanitário e seus produtos derivados, e dá outras providências. 32p.

DIAS, D. R.; VALENCIA, N. R.; FRANCO, D. A. Z.; LÓPEZ-NÚÑEZ, J. C. 2014. Management and utilization of wastes from coffee processing. In:

SHWAN, R. F.; FLEET, G. H. (Org.). Cocoa and coffee fermentations (p. 376-382). Boca Raton: CRC Taylor & Francis.

DING, Y.; LIU, Y.; LI, Z.; TAN, X.; HUANG, X.; ZENG, G.; ZHOU, L.; ZHENG, B. Biochar to improve soil fertility. A review. Agronomy for Sustainable Development, 36:36, 2016.

DOMINGUES, R. R.; TRUGILHO, P. F.; SILVA, C. A.; MELO, I. C. N. A.; MELO, L. C.; MAGRIOTIS, Z. M.; SÁNCHEZ-MONEDERO, M. A. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLOS one, v. 12, n. 5, 2017.

DOUMER, M. E.; RIGOL, A.; VIDAL, M.; MANGRICH, A. S. Removal of Cd, Cu, Pb, and Zn from aqueous solutions by biochars. Environmental Science and Pollution Research, v. 23, p. 2684-2692, 2016.

DUME, B.; BERECHA, G.; TULU, S. Characterization of biochar produced at diferente temperatures and its effect on acidic nitosol of Jimma, southwest Ethiopia. International Journal of Soil Science, v. 10, n. 2, p. 63-73, 2015.

FERREIRA, R. A. R. Contribuição ao estudo cinético e balanço energético da pirolise autotérmica da palha de cana-de-açúcar através de análises termogravimétricas e calorimetria. 2012. 81p. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de Uberlândia, Minas Gerais, 2012.

FREUNDLICH, H. M. F. Über die adsorption in lösungen. Zeitschrift für Physikalische Chemie, v. 57, p. 385–470, 1906.

GELL, K.; VAN GROENIGEN, J. W.; CAYUELA, M. L. Residues of bioenergy production chains as soil amendments: immediate and temporal phytotoxicity. Journal of Hazardous Materials, v. 186, n. 2-3, p. 2017-2025, 2011.

GUILHEN, S. N. Síntese e caracterização de biocarvão obtido a partir do resíduo de coco de macaúba para remoção de urânio de soluções aquosas. 2018. 325p. Tese (Doutorado em Ciências) – Instituto de Pesquisas Energéticas e Nucleares, São Paulo.

HOANG, N. T. V.; MAEDA, M. Nitrous oxide and carbon dioxide emissions from agricultural soil amended with diferent types of biochar at three temperatures. Journal of Environmental Sciences for Sustainable Society, v. 8, p. 22-31, 2018.

HOSLETT, J.; GHAZAL, H.; AHMAD, D.; JOUHARA, H. Removal of copper ions from aqueous solution using low temperatures biochar derived from pyrolysis of municipal solid waste. Science of the Total Environmental, v. 673, p. 777-789, 2019.

HOU, D.; GU, Q.; MA, F.; O’CONNELL, S. Life cycle assessment comparison of thermal desorption and stabilization/solidification of mercury contaminated soil on agricultural land. Journal of Cleaner Production, v. 139, p. 949–956, 2016.

HOU, D.; LI.; F. Complexities surrounding China’s soil action plan. Land Degradation & Development, v. 28, n. 7, p. 2315-2320, 2017.

HUANG, F.; GAO, L. Y.; DENG, J. H.; CHEN, S. H.; CAI, K. Z. Quantitative contribution of Cd2+ adsorption mechanisms by chicken-manue-derived biochars. Environmental Science and Pollution Research, v. 25, n. 28, p. 28322-28334, 2018.

IBI. International biochar initiative. Standardized Product Definition and Product Testing Guidelines for Biochar that is used in Soil. Biochar Standards V.2.1. 61p. 2015. Disponível em:

Biochar_Standards_V2.1_Final.pdf>. Acesso em: Ago. 2018.

KIM, M. S.; MIN, H. G.; KOO, N.; PARK, J.; LEE, S. H.; BAK, G. I.; KIM, J. G. The effectiveness of spent coffee grounds and its biochar on the amelioration of heavy metals-contaminated water and soil using chemical and biological assessment. Journal of Environmental Management, v. 146, p. 124-130, 2014.

KOMNITSAS, K.; ZAHARAKI, D.; BARTZAS, G.; KALIAKATSOU, G.; KRITIKAKI, A. Efficiency, of pecan shells and sawdust biochars on Pb and Cu adsorption. Desalination and Water Treatment, v. 57, n. 7, p. 3237-3246, 2014.

KONDAMUDI, N.; MOHAPATRA, S. K.; MISRA, M. Spent coffee grounds as a versatile source of green energy. Journal of Agricultural and Food Chemistry, v. 56, n. 24, p. 11757-11760, 2008.

KONKIENE, J.; BALTRENAITE, E. Biochar as adsorbent for removal of heavy metal ions [Cadmium(II), Copper(II), Lead(II), Zinc(II)] from aqueous phase. International Journal of Environmental Science and Technology, v. 13, p. 471-482, 2016.

LANGMUIR, I. The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, v. 38, p. 2221-2295, 1916.

LIN, Q.; XU, X.; WANG, L.; CHEN, Q.; FANG, J.; SHEN, X.; LOU, L.; TIAN, G. The speciation, leachability and bioaccessibility of Cu and Zn in animal manure-derived biochar: effects of feedstock and pyrolysis temperature. Frontiers of Environmental Science & Engineering, v. 11, n. 5, p. 1-11, 2017.

LIU, S. H.; HUANG, Y. Y. Valorization of coffee grounds to biochar-derived adsorbents for CO2 adsorption. Journal of Cleaner Production, v. 175, p. 354-360, 2018.

LYCHUK, T. E.; IZAURRALDE, R. C.; HILL, R. L.; MCGILL, W. B.; WILLIAMS, J. R. Biochar as a global change adaptation: predicting biochar impacts on crop productivity and soil quality for a tropical soil with the Environmental Policy Integrated Climate (EPIC) model. Mitigation and Adaptation Strategies for Global Change, v. 20, n. 8, 2015.

MA, F.; ZHANG, Q.; XU, D.; HOU, D.; LI, F.; GU, Q. Mercury removal from contaminated soil by thermal treatment with FeCl3 at reduced temperature. Chemosphere, v. 117, p. 388–393, 2014.

MCBEATH, A. V.; WURSTER, C. M.; BIRD, M. I. Influence of feedstock properties and pyrolysis conditions on biochar carbono stability as determined by hydrogen pyrolysis. Biomass and Bioenergy, v.73, p. 155-173, 2015.

MELO, L. C. A.; PUGA, A. P.; COSCIONE, A. R.; BEESLEY, L.; ABREU, C. A.; CAMARGO, O. A. Sorption and desorption of cadmium and zinc in two tropical soils amended with sugarcane-straw-derived biochar. Journal of Soils Sediments, v. 16, n. 1, p. 226-234, 2015.

NANDA, S.; MOHANTY, P.; PANT, K. K.; NAIK, S.; KOZINSKI, J. A.; DALAI, A. K. Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. BioEnergy Research, v.6, n.2, p.663-677, 2013.

NASCIMENTO, R. F.; LIMA, A. C. A.; VIDAL, C. B.; MELO, D. Q.; RAULINO, G. S. C. Adsorção: aspectos teóricos e aplicações ambientais. Fortaleza: Editora UFC, 2014. 258p.

PATRA, J. M.; PANDA, S. S.; DHAL, N. K. Biochar as a low-cost adsorbent for heavy metal removal: A review. International Journal of Research in Biosciences, v. 6, n. 1, p. 1-7, 2017.

PAZ-FERREIRO, J.; LU, H.; FU, S.; MÉNDEZ, A.; GASCÓ, G. Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth, v. 5, p. 65-75, 2014.

PENIDO, E.; MELO, L. C. A.; GUILHERME, L. R. G.; BIACHI, M. L. Cadmium binding mechanisms and adsorption capacity by novel phosphorus/magnesium-enrineered biochars. Science of the Total Environmental, v. 671, p. 1134-1143, 2019.

PUGA, A. P.; ABREU, C. A.; MELO, L. C. A.; BEESLEY, L. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. Journal of Environmental Management, v. 159, p. 86-93, 2015.

QI, S.; HOU, D.; LUO, J. Optimization of groundwater sampling approach under various hydrogeological conditions using a numerical simulation model. Journal of Hydrology, v. 552, p. 505–515, 2017.

REEVES III, J. B.; MCCARTY, G. W.; RUTHERFORD, D. W.; WERSHAW, R. L. Near infrared spectroscopic examination of charred pine wood, bark, cellulose and lignin: implications for the quantitative determination of charcoal in soils. Journal of Near Infrared Spectroscopy, v. 15, n. 5, p. 307-315, 2007.

REFFAS, A.; BERNARDET, V.; DAVID, B.; REINERT, L.; LEHOCINE, M. B.; DUBOIS, M.; BATISSE, N.; DUCLAUX, L. Carbons prepared from coffee grounds by H3PO4 activation: Characterization and adsorption of methylene blue and Nylosan Red N-2RBL. Journal of Hazardous Materials, v. 175, n. 1-3, p. 779-788, 2010.

SANTOS, L. D. Remoção de íons de Zn2+ por adsorção em carvão ativado em batelada e processo contínuo. 2014. 87p. Dissertação (Mestrado em engenharia) - Universidade Federal do Rio Grande do Sul, Porto Alegre, 2014.

SHAABAN, A.; SE, S. M.; MITAN, N. M. M.; DIMIN, M. F. Characterization of biochar derived from rubber wood sawdust through slow pyrolysis on surface porosities and functional groups. Procedia Engineering, v. 68, p. 365-371, 2013.

SINGH, B.; SINGH, B. P.; COWIE, A. L. Characterisation and evaluation of biochars for their application as a soil amendment. Australian of Soil Research, v. 48, n. 7, p. 516-525, 2010.

SOHI, S. P.; KRULL, E.; LOPEZ-CAPEL, E.; BOL, R. A review of biochar and its use and function in soil. Advances in Agronomy, v. 105, p. 47-82, 2010.

TANGMANKONGWORAKOON, N. An approach to produce biochar from coffee residue for fuel and soil amendment purpose. International Journal of Recycling of Organic Waste in Agriculture, 2019.

TSAI, W.; LIU, S.; CHEN, H.; CHANG, Y.; TSAI, Y. Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere, v. 89, n. 2, p.198-203, 2012.

UCHIMIYA, M.; KLASSON, K. T.; WARTELLE, L. H.; LIMA, I. M. Influence of soil properties on heavy metal sequestration by biochar amendment: 2. Copper desorption isotherms. Chemosphere, v. 82, p. 1438-1447, 2011.

United States Environmental Protection Agency (US-EPA) - Toxicity characteristic leaching procedure, method 1311, 1992. Link: https:// www.epa.gov/sites/production/files/2015-12/documents/1311.pdf.

United States Environmental Protection Agency (US-EPA). Microwave Assisted Acid Digestion of Sediments, Sludges, Soils and Oils – Method 3051 – SW – 846, 2007. Disponível em: URL http:www.epa.gov/epaosver/hazwaste/test/3051.pdf>[2019].

VEGA, R. C.; PIÑA, G. L.; CASTAÑEDA, H. A. V.; OOMAH, B. D. spent coffee grounds: A review on current research and future prospects. Trends in Food Science & Technology, v. 45, n. 1, p. 24-36, 2015.

VENEGAS, A.; RIGOL, A.; VIDAL, M. Viability of organic wastes and biochars as amendmentsfor the remediation of heavy metal-contaminated soils. Chemosphere, v.119, p.190-198, 2015.

WANG, H.; XIA, W.; LU, P. Study on adsorption characteristics of biochar on heavy metals in soils. Korean Journal of Chemical Engineering, v. 34, n. 6, p. 1867-1873, 2017.

WOOLF, D.; AMONETTE, J. E.; STREET-PERROTT, F. A.; LEHMANN, J.; JOSEPH, S. Sustainable biochr to mitigate global climate change. Nature Communications, v. 1, n. 56, 2010.

XU, Y.; SESHADRI, B.; SARKAR, B.; WANG, H.; RUMPEL, C.; SPARKS, D.; FARREAL, M.; HALL, T.; YANG, X.; BOLAN, N. Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil. Science of the total environment, v. 621, p. 148-159, 2018.

YANG, Y., CHUN, Y., SHENG, G., HUANG, M. pHdependence of pesticide adsorption by wheat-residuederived black carbon. Langmuir, v. 20, p.6736-6741, 2004.

YU, W.; LIAN, F.; CUI, G.; LIU, Z. N-doping effectively enhances the adsorption capacity of biochar for heavy metal ions from aqueous solution. Chemosphere, v.193, p.8–16, 2018.

ZHANG, P.; LO, I.; O’CONNOR, D.; PEHKONEN, S.; CHENG, H.; HOU, D. High efficiency removal of methylene blue using SDS surface-modified ZnFe2O4 nanoparticles. Journal of Colloid and Interface Science, v.508, p. 39-48, 2017.

ZHAO, B.; O’CONNOR, D.; ZHANG, J.; PENG, T.; SHEN, Z.; TSANG, D. C. W.; HOU, D. Effect of pyrolysis temperature, heating rate, and residence time on repeseed stem derived biochar. Journal of Cleaner Production, v. 174, p. 977-987, 2018.




DOI: http://dx.doi.org/10.25186/cs.v14i4.1634

Refbacks

  • There are currently no refbacks.