DIETARY FIBER AND ANTIOXIDANT ACTIVITY OF GLUTEN-FREE COOKIES WITH COFFEE CHERRY FLOUR ADDITION

Damat Damat, Rista Anggriani, Roy Hendroko Setyobudi, Peeyush Soni

Abstract


Coffee husk and coffee pulp are by-product of coffee fruit and bean processing, can be considered as potential functional ingredients for food production as coffee cherry flour (CCF).  The CCF contains a lot of carbohydrates, proteins, caffeine, tannins, and polyphenols. In this study, CCF was combined with modified arrowroot starch (MAS) and modified cassava flour (MOCAF) into cookies and improvement on the physical, chemical, and nutraceutical properties of the cookies were studied. The cookies consisted of 20 % of MOCAF and 80 % mixed of modified arrowroot starch and CCF in five levels (80 %:0 %; 75 %:5 %; 70 %:10 %; 65 %:15 %; 60 %:20 %) and objective physical, chemical, and nutraceutical properties of the cookies were assessed. The results showed that the total dietary fiber content was enhanced from 11.69 % to 19.48 % with a high proportion of 20 % CCF. The cookies added with CCF displayed enhanced antioxidant activity. Acceptable cookies were obtained by adding 5 % CCF. Thus, the results implied that cookies with CCF addition obtained dietary fiber enriched cookies with improved antioxidant activity.


Keywords


Functional ingredients, improved nutrition, modified cassava flour, modified arrowroot starch, waste to food, zero waste.

Full Text:

PDF

References


AJILA, C.M., LEELAVATHI, K., RAO, U.J.S.P. Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. Journal of Cereal Science, US, v.48, n.2, p. 319−326, September 2008.

ALVES, R.C., OLIVEIRA, M.B.P.P., CASAL, S. Coffee authenticity. In: OLIVEIRA, M.B.P.P., MAFRA, I., AMARAL, J.S. (Eds), Current topics on food authentication. Transword Research Network, Kerala. India. 2011. 57p.

AMBRIZ, S.I. RODRÍGUEZ, J.J.; HERNÁNDEZ, I.; AGAMA-ACEVADO, E.; TOVAR, J.; BELLO-PÉREZ, L.A. Characterization of fibre-rich powder prepared by liquefaction of unripe banana flour. Food Chemistry, Netherlands, v.107, n.4, p. 1515−1521, 2008.

ATEŞ, G.; ELMACI, Y. Physical, chemical and sensory characteristics of fiber-enriched cakes prepared with coffee silverskin as wheat flour substitution. Journal of Food Measurement and Characterization, USA, v.13, n.1, p.755−763, 2019.

BEKALO, S.A.; REINHARDT, H.W. Fibers of coffee husk and hulls for the production of particleboard. Materials and Structures, Netherlands, v.43, n.8, p. 1049–1060, 2010.

BENITEZ V.; MIGUEL R.; SARA H.; SILVIA C.; YOLANDA A.; MARIA A. M. Coffee parchment as a new dietary fiber ingredient: Functional and physiological characterization. Food Research International, Netherlands, v.122, p. 105–113, 2019.

BLINOVÁ, L.; SIROTIAK, M.; BARTOŠOVÁ, A.; SOLDÁN, M. Utilization of waste from coffee production. Research Papers Faculty of Materials Science and Technology Slovak University of Technology, Trnava, v. 25, n.40, p. 91–101, 2017.

BONDESSON, E. A nutritional analysis on the by-product coffee husk and its potential utilization in food production. 2015. [Thesis]. Dept. of Food Science, SLU, Uppsala, Swedish.

BOSHRA V.; WAHIDU. Z.; TAJJUL A. Investigation on Physicochemical and Sensory Evaluation of Cookies Subtituted With Papaya Pulp Flour. Journal of Food Quality, UK, v.38, n.3, p. 175−183, 2015.

BRIEN, C.M., CHAPMAN, D., NEVILLE, D.P., KEOGH, M.K., ARENDT, E.K., Effect of varying the micro encapsulation process on the functionality of hydrogenated vegetable fat in shortdough biscuits. Food Research International, Netherlands, v.36, n.3, p. 215−221, 2003.

CF GLOBAL HOLDINGS. Using Coffee Cherry - The Coffee Cherry Company. 2019. [online] Available at: https://coffeecherryco.com/recipes/ [Accessed 27 July 2018].

CHAUHAN A.; SAXENA, D.C.; SUKHCHARN, S. Total dietary fibre and antioxidant activity of gluten free cookies made from raw and germinated amaranth (Amaranthus spp.) flour. LWT-Food Science and Technology, US, v.63, n.2, p. 939−945, 2015.

DAMAT; TAIN, A.; HANDJANI, H.; CHASANAH, U. (a). Mikroskopi dan organoleptik kue kering fungsional dari pati garut (Marantha arundinaceae L.) termodifikasi [Microscopy and organoleptic functional pastries of arrowroot starch (Marantha arundinaceae L.) modified]. Jurnal Aplikasi Teknologi Pangan, Indonesia, v.6, n.1, p. 161−166, 2017. [in Bahasa Indonesia].

DAMAT; TAIN, A.; HANDJANI, H.; CHASANAH, U.; DWI, D.S. (b). Karakterisasi roti manis dari pati Garut termodifikasi dengan penambahan emulsifier lesitin [Characterization of sweet bread from modified Garut starch with addition of lecithin emulsifier]. In: Prosiding Seminar Nasional FKPT-TPI, Sulawesi Tenggara: Indonesia. p. 65−76, 2017. [in Bahasa Indonesia].

DIAS, M., MELO, M.M., SCHWAN, R.F., SILVA, C.F. A new alternative use for coffee pulp from semi-dry process to β-glucosidase production by Bacillus subtilis. Letters in Applied Microbiology, UK, v.61, n.6, p. 588–595, 2015.

DUANGJAI, A.; SUPHROM, N; WUNGRATH, J.; ONTAWONG, A.; NUENGCHAMNONG, N.; YOSBOONRUANG, A. Comparison of antioxidant, anti-microbial activities and chemical profiles of three coffee (Coffea arabica L.) pulp aqueous extracts. Integrative Medicine Research, South Korea, v.5, n.4, p. 324−331, 2016.

ELBA, C.; ANA, B.; EVA, G. Coffee berry processing by-product valorization: Coffee parchment as a potential fiber source to enrich bakery goods. Journal of Food, Nutrition and Population Health, London, v.1, n.2, p. 1−12, 2017

ESQUIVEL, P.; JIMÉNEZ, V.M. Functional properties of coffee and coffee by-products. Food Research International, Netherlands, v.46, n.2, p. 488−495, 2012.

FARAH, A.; SANTOS, T.F. The coffee plant and beans: An introduction. In: PREEDY, V.R. (Ed.), Coffee and Health and Disease Prevention. London, United Kingdom: Academic Press, 2015. 5−10p.

FARIDAH D.N.; WINIATI P. RAHAYU; MUCHAMAD SOBUR A. Modifikasi pati Garut (Marantha arundinacea) dengan perlakuan hidrolisis asam dan siklus pemanasan-pendinginan untuk menghasilkan pati resisten tipe 3. [Modification of Garut (Marantha arundinacea) starch with acid hydrolysis treatment and heating-cooling cycle to produce type 3 resistant starch]. Jurnal Teknologi Industri Pertanian, Indonesia, v.23, n.1, p. 61−69, 2013. [in Bahasa Indonesia].

FRANCA, A.S.; OLIVEIRA, L.S. Coffee processing solid wastes: Current uses and future perspectives. In: ASHWORTH, G.S., AZEVEDO, P. (Eds.). Agricultural Wastes. New York: Nova Science Publishers Inc. 2009. 155−187p.

GIUBERTI, G.; MARTI, A.; FORTUNATI, P.; GALLO, A. Gluten free rice cookies with resistant starch ingredients from modified waxy rice starches: Nutritional aspects and textural characteristics. Journal of Cereal Science, USA, v.76, p. 157−164, 2017.

GURRAM, R., AL-SHANNAG, M., KNAPP, S., DAS, T., SINGSAAS, E., ALKASRAWI, M. Techni-cal possibilities of bioethanol production from coffee pulp: A renewable feedstock. Clean Technologies and Environmental, Germany, v.18, n.1, p. 269–278, 2016.

HARTATIK, T.D.; DAMAT. Pengaruh penambahan penstabil CMC dan gum Arab terhadap karakteristik cookies fungsional dari pati Garut termodifikasi. [Effect of adding CMC stabilizers and Arabic gum to the functional cookies characteristics of modified Garut starch]. Agritop, Indonesia, v.15, n.1, p. 9−25, 2017. [in Bahasa Indonesia].

JANISSEN, B.; HUYNH, T. Chemical composition and value-adding applications of coffee industry by-products: A review. Resources, Conservation and Recycling, Elsevier, v. 128, p. 110–117. 2018.

MCDONALD, G. Indonesia grain and feed update July 2018. USDA Foreign Agricultural Service. GAIN Report Number: ID1820. 2018. [Online]. Available at https://www.fas.usda.gov/data/indonesia-grain-and-feed-update-8 [Accessed 25 Dec. 2018].

MOLYNEUX, P., 2004, The use of the stable free radical diphenylpicryl-hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin Journal of Science and Technology, Thailand, v.26, n.2, p. 211−221, 2004.

MULLEN, W., NEMZER, B., STALMACH, A., ALI, S., COMBET, E. Polyphenolic and hydroxy- cinnamate contents of whole coffee fruits from China, India, and Mexico. Journal of Agricultural and Food Chemistry, USA, v.61, n.22, p. 5298–5309, 2013.

MURTHY, M.; NAIDU, M. Sustainable management of coffee industry by-products and value addition−A review. Resources, Conservation and Recycling, Netherlands, v. 66, p. 45–58, 2012.

PADMAPRIYA, R.; THARIAN, J. A.; THIRUNALASUNDARI, T. Coffee waste management-An overview. International Journal of Current Science, India, v. 9, p. 83–91, 2013.

PUWASTIEN, P.; SIONG, T.; KANTASUBRATA, J; CRAVEN, G.; RYAN, R.; FELICIANO, JUDPRASONG. K. ASEAN Manual Food Analysis. Thailand: Regional Centre of ASEAN Network of Food Data System Institute of Nutrition, Mahidol University Thailand. 2011.

SAJILATA, M.G.; SINGHAL, R.S.; KULKARNI, P.R. Resistant srach—A review. Comprehensive Reviews in Food Science and Food Safety, UK, v. 5, p. 1–17, 2006.

SETYOBUDI, R. H.; WAHONO, S. K.; ADINURANI, P. A.; WAHYUDI, A.; WIDODO, W.; MEL, M., NUGROHO, Y. A.; PRABOWO, B.; LIWANG, T. (a) Characterisation of arabica coffee pulp - hay from Kintamani - Bali as prospective biogas feedstocks. MATEC Web Conferences, v. 164, p. 1–13. 2018.

SETYOBUDI, R. H.; ZALIZAR, L.; WAHONO, S. K.; WIDODO, W.; WAHYUDI, A.; MEL, M., PRABOWO, B.; NUGROHO, Y. A.;.LIWANG, T.; ZAEBUDIN, A. (b). Prospect of Fe non-heme on coffee flour made from solid coffee waste: Mini review. IOP Conference Series: Earth and Environmental Science, v. 293, n.1, p. 1–25. 2019.

SHEKHAR, T.C.; ANJU, G. Antioxidant activity by DPPH radical cavenging method of Ageratum conyzoides Linn. Leaves. American Journal of Ethnomedicine, India, v.1, n. 4, p. 244−249, 2014.

SIMONE DE SOUZA MONTES, S.D.; RODRIGUES, L.M.; CAMILLOTO, G.P.; CARDOSO, R.D.V.; CRUZ, R.S. Tapioca and rice flour cookies: Technological, nutritional and sensory properties. Ciência e Agrotecnologia, Lavras, v.39, n.5, p. 514−522, 2015.

SMITH, M.J.D. Statistical Analysis Handbook. Edinburgh: The Winchelsea Press, 2018. 476−490p.

SOETIKNO, J.S.; LING, J.H.S; YING, Y.S. Fortification of modified cassava flour through application of fermented food containing poly-glutamic acid. Food Science Nutrition Technology, US, v.2, n.4, p. 1−8, 2017.




DOI: http://dx.doi.org/10.25186/cs.v14i4.1625

Refbacks

  • There are currently no refbacks.