• Anak Agung Istri Ratnadewi University of Jember
  • Handariatul Masruroh Faculty of Mathematics and Natural Sciences - Universitas of Jember
  • Suwardiyanto . Faculty of Mathematics and Natural Sciences - Universitas of Jember
  • Agung Budi Santoso Faculty of Mathematics and Natural Sciences - Universitas of Jember



Coffee peel waste, endo-β-1, 4-xylanase, xylooligosaccharide (XOS)


Coffee is the second most common trade commodity in the world after petroleum. The coffee industry generates large amounts of waste in the form of coffee peels. Coffee peel waste consist of lignocellulose containing hemicellulose and other chemical compounds. The objective of this research was to extract xylan, the main component of hemicellulose from coffee waste, and to utilize the xylan in the production of xylooligosaccharide (XOS). Xylan was extracted from coffee waste using NaOH solution and neutralized by HCl 6 M. Afterward, xylan was precipitated using ethanol. Various NaOH concentrations (4, 8, 12 and 16 % w/v) were used to obtain the xylan. NaOH solution with a concentration of 12 % results 43 % extraction of xylan from coffee waste. Xylan obtained from the extraction was hydrolyzed using endo-β-1,4-xylanase from Bacillus sp. to produce XOS. The incubation time of enzyme-substrate was observed at 40 oC, pH 5 and enzyme dose of 23.6 U. Thin layer chromatography results showed that the hydrolyzed products of xylan are XOS with composition xylobiose (X2), xylotriose (X3), xylotetraose (X4) and xylopentaose (X5). LC-MS studies revealed that X2 is the dominant product with the concentration of 6.00 ppm. This research demonstrates the potential to utilizate coffee peel waste as a source of xylan for the production of XOS.

Author Biographies

Anak Agung Istri Ratnadewi, University of Jember

Department of Chemistry

Handariatul Masruroh, Faculty of Mathematics and Natural Sciences - Universitas of Jember

Departement of Chemistry

Suwardiyanto ., Faculty of Mathematics and Natural Sciences - Universitas of Jember

Departement of Chemistry

Agung Budi Santoso, Faculty of Mathematics and Natural Sciences - Universitas of Jember

Departement of Chemistry


AACHARY, A. A.; PRAPULLA, S. G. Value addition to corn cob: production and characterization of xylooligosaccharides from alkali pretreated ligninsaccharide complex using Aspergillus oryza MTCC5154. Bioresource Technology, 100, 991–995. 2009

AACHARY, A. A.; PRAPULLA, S. G. Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties and applications. Comprehensive Reviews in Food Science and Food Safety, 10, 2–16, 2011.

ABIRAMI, V.; MEENAKHSI, S. A.; KANTHYMATHY K.; BARHATHIDASAN R.; MAHALINGAM R.; PANNEERSELVAM A. Partial purification and characterization of anextracellular xylanase from Penicillium janthinellum and Neurospora crassa. J. Natural Product Plant Resources 1(4), 117-125.2011.

AKPINAR, O., AK, O.;KAVAS, A.; BAKIR, U.; YILMAS, L. Enzymatic production of xylooligosaccharides from cotton stalks. Journal Agricultural and Food Chemistry,55, 5544-5551,2007.

AKPINAR, O.; ERDOGAN, K.; BAKIR, U.; YILMAZ, L. Comparison of acid and enzymatic hydrolysis of tobacco stalk xylan for preparation of xylooligosaccharide. LWT-Food Science and Technology, 43, 119–125. 2010

AL-SHERAJI, S. H.; ISMAIL, A.; MANAP, M. H.; MUSTAFA, S.; YUSOF, R. M.; HASSAN, F. A. Prebiotic functional foods: A Review. Journal of Functional Foods, 5(4), 1542-1553, 2013.

BRIENZO, M.; CARVALHO, W.; MILAGRES, A. M. F. Xylooligosaccharides production fromalkali pretreated sugarcane bagasse using xylanase from Thermoascus aurantiacus. Applied Biochemistryand Biotechnology, 162, 1195–1205, 2010

BURUIANA, C. T.; GÓMES, B.; VIZIREANU, C.; GARROTE, G. Manufacture and evaluation of xylooligosaccharides from corn stover as emerging prebiotic candidates for human health. LWT-Food Science and Technology, 77, 449-459, 2016.

COLOM, X.; CARRILLO, F.; NOGUES, F,; GARRIGA, P. Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polymer Degradation and Stability, 80,543-549, 2003

CUMMINGS, J.; MACFARLANE, G.; ENGLYST, H. Prebiotic digestion and fermentation. American Journal of Clinical Nutrition, 73(2), 415S-420S, 200.

DAGLIA, M.; PAPETTI, A.; GREGOTTI, C.; BERTE, F.; GAZZANI, G. In vitro antioxidant and ex vivo protective activities of green and roasted coffee. Journal of AgriculturalandFood Chemistry, 48, 1449–1454, 2000.

DA SILVA, A. E.; MARCELINO, H. R.; GOMES, M. C. S.; OLIVIERA, E. E.; NAGHASIMA, T.; EGITO, E. S. T. Xylan, a promising hemicellulose for pharmaceutical use. Products and Application of Biopolymers, 61-84, 2012.

EBRINGEROVA, A.; HROMADKOVA, Z.; MALOVIKOVA, A.; HRIBALOVA, V. Immunomodulatory activity of acidic xylans in relation to their structural and molecular properties. International Journal of Biological Macromolecules, 30, 1–6, 2002

FAN, L.; PANDEY, A.; SOCCOL, C. R. Flammulina velutipes on coffee husk and coffee spentground. Brazilian Archives of Biology and Technology,44, 205–212, 2001.

FRANCA, A. S.; OLIVEIRA, L. S.; FERREIRA, M. E. Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds. Desalination 249, 267–272, 2009.

GOLDMAN, N. Methods for optimizing enzymatic hydrolysis of xylan to improve xylooligosaccharides yields. Basic Biotechnology, 5, 31-36, 2009.

GOWDHAMAN, D.; PONNUSANI, V. Production and optimization of xylooligosaccharides from corncob by bacillus aerophilus KGJ2 xylanase and its antioxidant potential. International Journal of Biological Macromolecules, 79, 595–60, 2015.

JAYACHANDRA, T.; VENUGOPAL, C.; ANU APPAIAH, K. A. Utilization of phytotoxic agro waste-coffee cherry husk through pretreatment by the ascomycetes fungi Mycotypha for biomethanation. Energy for Sustainable Development, 15(10), 104-108, 2011.

KALLEL, F.; DRISS, D.; BOUAZIZ, F.; NEIFER, M.; GHORBEL, R.; CHAABOUNI, S, E. Production of xylooligosaccharides from garlic straw xylan by purified xylanase from Bacillus mojavensis ueb-fk and their in vitro evaluations prebiotics. Food and Bioproduct Processing, 94, 536-546, 2015.

KONDAMUDI, N.; MOHAPATRA, S. K.; MISRA, M. Spent coffee grounds as a versatile source of green energy. Journal of Agricultural and Food Chemistry, 56, 11757–11760, 2008.

KUMAR, S.; NEGI, Y. S. Corn cob xylan-based nanoparticle: Ester product of 5-aminosalicylic acid for possible targeted delivery of a drug. Journal of Pharmaceutical Sciences and Research, 4(12), 1995-2003, 2012.

LASHERMES, P.; ANDRADE, A. C.; ETIENNE, H. Genomics of coffee, one of the world's largest traded commodities, 2008

MACHADO, C. M. M.; SOCCOL, C. R.; OLIVEIRA, B. H.; PANDEY, A. Gibberellic acid production by solid-state fermentation in a coffee husk. Applied Biochemistry and Biotechnology, 15, 102–106, 2002

MEI, G.; CAREY, C.; TOSH, S.; KOSTRZYNSKA, M. Utilization of different types of dietary fiber by potential probiotics. Canadian Journal of Microbiology, 57(10), 857-865, 2011.

MOURA, P.; BARATA, R.; CARVALHEIRO, F.; GIRIO, F.; LOUREIRO, M. C.; ESTEVES, M. P. In vitro fermentation of xylo-oligosaccharides from corn cobs autohydrolysis by Bifidobacterium and Lactobacillus strains. LWT, 40, 963-972, 2007.

MURTHY, P.S.; NAIDU M. M. Protease production by Aspergillus oryzae in solid state fermentation utilizing coffee by-products. World Applied Science Journal, 8(2), 199–205, 2010.

MURTHY, P. S.; NAIDU M. M. Production and application of xylanase from Penicillium sp. utilizing coffee by-products. Food Bioprocess Technology, 5, 657-66, 2012.

MUSATTO, S. I.; MACHADO, E. M. S.; MARTHIN, S.; TEIXEIRA, J. A. Production, composition, and application of coffee and its industrial residues. Food Bioprocess Technology, 4, 661-672, 2011.

OLIVIERA, E. E.; SILVA, A. E.; JUNIOR, T. N.; GOMES, M. C. S.; AGUIAR, M. A.; MARCELINO, H. R.; ARAUJO, I. B.; BAYER, M. P.; RICARDO, N. M. P. S.; OLIVIERA, A. S.; EGITO, E. S. T. Xylan from corn cobs, a promising polymer for drug delivery: Production and characterization. Bioresource Technology, 101, 5402-5406, 2010.

PENG, F.; REN, J. L.; XU, F.; BIAN, J.; PENG, P.; SUN, R. C. Fractional study of alkali-soluble hemicelluloses obtained by graded ethanol precipitation from sugar cane bagasse. Journal of Agricultural and Food Chemistry, Vol. 58: 1768-1776, 2010.

RAMALAKSHMI, K.; RAO, L. J. M.; TAKANO-ISHIKAWA, Y.; GOTO, M. Bioactivities of low-grade green coffee and spent coffee in different in vitro model systems. Food Chemistry, 115, 79–85, 2009.

RATNADEWI, A. A. I.; HANDAYANI W.; PUSPANINGSIH, N. N. T. Produksi dan karakterisasi, enzim β-endoxilanase dari bakteri sistem intestinal rayap. Jurnal Ilmu Dasar 8(2): 110, 2007.

ROBERFROID, M.; GIBSON, G.; HOYLES, L.;MCCARTENEY, A.; RASTALL, R.; ROWLAND, I.; WOLVERS, D.; WATZL, B.; SZAJEWSKA, H.; STAHL, B.; GUARNER, F.; RESPINDEK, F.; WHELAN, K.; COXAM, V.; DAVICCO, M.; LÉOTOING, L.; WITTRANT, Y.; DELZENNE, N.; CANI, P.; NEYRINCK, A.; MEHEUST, A. Prebiotic effects: metabolic and health benefits. British Journal of Nutrition, 104(S2), S1-S63, 2010.

SAHA, B. C. Hemicelluloses bioconversion. Journal of Industrial Microbiology and Biotechnology, 30, 279–291, 2003

SAMANTA, A. K.; SENANI, S. S.; KOLTE, A. P.; SRIDHAR, M.; SAMPATH, K. T.; JAYAPAL, N. Production and in vitro evaluation of xylooligosaccharides generated from corn cobs. Food Bioproducts Processing, 90, 466–474, 2012.

SAMANTA, A. K.; JAYAPAL, N.; KOLTE, A. P.; SENANI, S.; SRIDHAR, M.; MISHRA, S.; PRASAD, C. S.; SURESH, K. P. Application of pigeon pea (Cajanus cajan) stalks as raw material for xylooligosaccharides production. Application Biochemistry Biotechnology ,169, 2392-2404, 2013.

SOLANGE I.; MUSSATTO; ERCÍLIA M. S; MACHADO; SILVIA MARTINS; JOSÉ A. Teixeira. Production, Composition, and Application of Coffee and Its Industrial Residues. Food Bioprocess Technol, 4, 661-672, 2011.

VIEIRA, H. D. 2008. Coffee: The plant and its cultivation. Plant-Parasitic Nematodes of Coffee,1, 3-18.

YANG, H.; YAN, R.; CHEN, H.; LEE, D. H.; ZHENG, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86, 1781-1788, 2017.

ZHOU, G.; TAYLOR, G.; POLLE, A. FTIR-ATR-based prediction and modeling of lignin and energy contents reveal independent intra-specific variation of these traits in bioenergy poplars. Plant Methods, 7, 1-9, 2011.



How to Cite