SELECTION OF Coffea arabica L. HYBRIDS USING MIXED MODELS WITH DIFFERENT STRUCTURES OF VARIANCE-COVARIANCE MATRICES

Fernanda Aparecida Castro Pereira, Samuel Pereira de Carvalho, Tiago Teruel Rezende, Leonardo Luiz Oliveira, Diego Rosa Baquião Maia

Resumo


This study aimed to evaluate different structures of variance-covariance matrices in modeling of productive performance of coffee genotypes over the years, and select hybrids of Coffea arabica using mixed models. A mixed linear model was used to estimate variance components, heritability coefficients, and prediction of genetic values of hybrids and cultivars. Three commercial cultivars and eight hybrids of C. arabica L. were evaluated. The field production after acclimatization of seedlings was conducted in March 2006. The yield averages from 2009, 2010, 2011, 2013, and 2014 agricultural years were evaluated. The selection criteria of models were used to test 10 structures of variance-covariance matrices, and later a model was chosen to estimate the components of variance, heritability coefficients, and prediction of genetic values. According to Bayesian information criterion (BIC), the best structure was ARMA (Autoregressive Moving Average); however, considering the Akaike Information Criterion (AIC) and corrected Akaike Information Criterion (AICC), the CSH (Heterogeneous Composite Symmetric) was indicated. The Spearman correlation between the genotypic values obtained in the models with ARMA and CSH type R matrix was 0.84. The high and positive correlation indicates that the best model could involve the R matrix with ARMA or CSH structure. The heritability of individual genotypes differed from heritability in broad sense, which considers the independence among agricultural years. Hybrids with higher performance were identified by ordering the genotypic effects, among them, H 2.2, H 4.2, and H 6.1 hybrids were highlighted.

Palavras-chave


Plant breeding; repeated measures; yield.

Texto completo:

PDF (English)

Referências


ANDRADE, V. T. et al. Statistical modeling implications for coffee progenies selection. Euphytica, Wageningen, v. 207, n. 1, p. 177-189, Jan. 2016.

ANDREAZI, E. et al. Desempenho de híbridos F1 de café arábica com resistência simultânea a ferrugem, mancha aureolada e bicho mineiro. Coffee Science, Lavras, v. 10, n. 3, p. 375-382, July/Sept. 2015.

APIOLAZA, L. A.; GARRICK, D. J. Analysis of longitudinal data from progeny tests: some multivariate approaches. Forest Science, Bethesda, v. 47, n. 2, p. 129-140, May. 2001.

BERNARDO, R. N. Breeding for quantitative traits in plants. 2. ed. Woodbury: Stemma Press, 2010, 390p.

BERTRAND, B. et al. Performance of Coffea arabica F1 hybrids in agroforestry and full-sun cropping systems in comparison with American pure line cultivars. Euphytica, Wageningen, v. 181, n. 2, p 147-158, Sept. 2011.

BRUCKNER, C. H. Fundamentos do melhoramento de fruteiras. 1. ed. Viçosa: Editora UFV, 2008, 202 p.

BURGUEÑO, J. et al. Genomic prediction of breeding values when modeling genotype×environment interaction using pedigree and dense molecular markers. Crop Science, Madison, v. 52, n. 2, p. 707-719, Mar/Apr. 2012.

BURNHAM, K. P.; ANDERSON, D. R. Multimodel Inference - Understanding AIC and BIC in model selection. Sociological Methods and Research, Cambridge, v. 33, p. 261-304, 2004.

CARVALHO, A. Principles and practice of coffee plant breeding for productivity and quality factors. In: CLARKE, R. J.; MACRAE, R. (Eds.). Coffee: Agronomy. London: Elsevier Applied Science, 1988. p. 129–165.

COOPER, D. M.; THOMPSON, R. A note on the estimation of the parameters of the autoregressivemoving average process. Biometrika, London, v. 64, n. 3, p. 625-628, Sept/Dec. 1977.

DE FAVERI J. et al. Residual variance–covariance modeling in analysis of multivariate data from variety selection trials. Journal of Agricultural, Biological, and Environmental Statistics, v. 22, n. 1, p. 1–22, Jan/Mar. 2016.

FLORIANO, E. P. et al. Ajuste e seleção de modelos tradicionais para série temporal de dados de altura de árvores. Ciência Florestal, Santa Maria, v. 16, n. 2, p. 177-199, Apr/June. 2006.

FREITAS, E. G. de. et al. Modelo univariado aplicado a dados longitudinais de cana-de-açúcar. Revista Brasileira de Biometria, Lavras, v. 26, p. 93-16, 2008.

GURKA, M. J. Selecting the best linear mixed model under REML. The American Statistician, Washington, v. 60, n. 1, p. 19-26, Jan/Mar. 2006.

HENDERSON, C. R. Best linear unbiased estimation and prediction under a selection model. Biometrics, Bethesda, v. 31, p. 423-449, 1975.

KONISHI, S.; KITAGAWA, G. Information criteria and statistical modeling. 1. ed. New York: Springer, ISBN 0387718869. 2008. 321p.

LITTELL, R. C. et al. SAS system for mixed models. 2. ed. Cary: Statistical Analysis System Institute, 2006. 828 p.

MAUCHLY, J. W. Significance test for sphericity of a normal n-variate distribution. Annals of Mathematical Statistics, Ann Arbor, v. 11, n. 2, p. 204-209, Apr/June. 1940.

MEDINA FILHO, H. P.; BORDIGNON, R.; CARVALHO, C. H. S. de. Desenvolvimento de novas cultivares de café arábica. In: CARVALHO, C. H. S. de, (Ed.). Cultivares de café: origem características e recomendações. Brasília: Embrapa Café, 2008. p. 79-101.

MOHAMMED, W. Heterosis and combining ability analysis for coffee quality in diallel crosses of diverse coffee (Coffea arabica L.) parents in origin. East African Journal of Sciences, Haramaya, v. 5, n. 1, p. 12-21, Jan/June. 2011.

OLIVEIRA, A. C. B. et al. Prediction of genetic gains from selection in Arabica coffee progenies. Crop Breeding and Applied Biotechnology, Viçosa, v. 2, p. 106-113, 2011.

PASTINA, M. M. et al. A mixed model QTL analysis for sugarcane multiple-harvest-location trial data. Theoretical and Applied Genetics, New York, v. 124, n. 5, p. 835-849, Mar. 2012.

PEREIRA, T. B. et al. Eficiência da seleção de progênies de café F4 pela metodologia de modelos mistos (REML/BLUP). Bragantia, Campinas, v. 72, n. 3, p. 230-236, July/Sept. 2013.

PIEPHO, H. P.; ECKL, T. Analysis of series of variety trials with perennial crops. Grass and Forage Science, Victoria, v. 69, n. 3, p. 431–440, July/Sept. 2014.

PIEPHO, H. P. et al. BLUP for phenotypic selection in plant breeding and variety testing. Euphytica, Wageningen, v. 161, n. 1-2, p. 209-228, May. 2008.

RAMALHO, M. A. P. et al. Aplicações da genética quantitativa no melhoramento de plantas autógamas. 1. ed. Lavras: Editora UFLA, 2012. 522 p.

RESENDE, M. D. V. Matemática e estatística na análise de experimentos e no melhoramento genético. 1. ed. Colombo: Embrapa Florestas, 2007. 435p.

SANTOS, V. E. dos. et al. Análise do setor de produção e processamento de café em Minas Gerais: uma abordagem matriz insumo-produto. Revista de Economia e Sociologia Rural, Brasília, v. 47, n. 2, p. 363–388, jun. Apr/June. 2009.

SILVA, E. N.; DUARTE, J. B.; REIS, A. J. dos S. Seleção da matriz de variância-covariância residual na análise de ensaios varietais com medidas repetidas em cana-de-açúcar. Ciência Rural, Santa Maria, v. 45, n. 6, p. 993-999, June. 2015.

SONG, P. X. -K. Correlated data analysis: modeling, analytics, and applications. New York: Springer. 2007. 352 p.




DOI: http://dx.doi.org/10.25186/cs.v13i3.1444

Apontamentos

  • Não há apontamentos.