SAPROBIC FUNGI AS BIOCONTROL AGENTS OF HALO BLIGHT (Pseudomonas syringae pv. garcae) IN COFFEE CLONES

Dayana Alvarenga Botrel, Marie Caroline Ferreira Laborde, Flávio Henrique Vasconcelos de Medeiros, Mário Lúcio Vilela Resende, Pedro Martins Ribeiro Júnio, Sérgio Florentino Pascholati, Luís Fernando Pascholati Gusmão

Abstract


Halo blight caused by Pseudomonas syringae pv. garcae is a limiting disease in coffee production. There are few efficient commercial products on the market to control this disease, and therefore, the prospection of different biocontrol agents is a promising alternative. The objectives in this study were (i) to select saprobic fungi with the potential to control halo blight in coffee clones, and (ii) to evaluate the contributions of induced resistance as control mechanisms. Plants were sprayed with Gonytrichum chlamydosporium, Phialomyces macrosporus, and Moorella speciosa 7 d before inoculation with Pseudomonas. syringae pv. garcae. The area under the halo blight progress curve (AUDPC) and plant growth parameters were evaluated. M. speciose and G. clamydosporium did not reduce the AUDPC and even reduced plant growth in none of the trails compared to the water control. P. macrosporus consistently reduced AUDPC by 42 - 72% and increased plant height by 40%. Thereafter, the contributions of induced resistance was evaluated for the P. macrosporus, selected as the most promising biocontrol agent.. In order to determine induced resistance, phenylalanine ammonia lyase (PAL), peroxidase (POX), and ascorbate peroxidase (APX) activity of plant leaves were measured at two time points after stress challenge. Enzyme activity evaluation demonstrated high activity of POX and PAL at seven days after treatment with the saprobe, and high APX activity after 14 days. The results of this study indicate that P. macrosporus has the potential to be used in the management of coffee halo blight in seedling production, and one mechanism likely involved is induced resistance.

Keywords


Foliar disease, Induced systemic resistance, Coffea arabica, saprobe fungus, biological control.

Full Text:

PDF

References


AGRICULTURE USDo. Production, Supply and Distribution. Available on :< http://www.fas.usda.gov/commodities/coffee >. Accessed 16 December 2017

AHMAD, R. B.; THARAPPAN, D. R.; BONGIRWAR. Impact of gamma irradiation on -the monsooning of coffee beans. Journal of Stored Products, Helsingin, v. 39, n. 2, p. 149-157. July. 2003.

AHMAD, A.; SHAFIQUE, S.; AKRAM, W. Penicillium oxalicum directed systemic resistance in tomato against Alternaria alternata. Acta Physiologiae Plantarum, Kraków, v. 36, n. 5, p. 1231-1240. May. 2014.

ANGELICO, C. L. Aplicação do agente biológico Cladosporium cladosporioides (Fresen) de Vries “Cladosporin” como bioprotetor da qualidade do café (Coffea arabica L.). 2012. 321p. Tese (Doctorate in food Science) - Universidade Federal de Lavras, Lavras, 2012.

ATHAYDE SOBRINHO, C. P. T.; FERREIRA, L. S., CAVALCANTI, L. S. Indutores abióticos. In:_________. Indução de resistência em plantas a patógenos e insetos. Piracicaba: Fundação de Estudos Agrários “Luiz de Queiroz”, 2005. p51-80.

BARROS, D. C. M. et al. Biocontrol of Sclerotinia sclerotiorum and white mold of soybean using saprobic fungi from semi-arid areas of Northeastern Brazil. Summa Phytopathologica, Botucatu, v. 41, n. 4, p. 251–255, Dec. 2015.

BASHAN, Y.; DE BASHAN, L. E.; PRABHU, S. R. Superior polymeric formulations and emerging innovative products of bacterial inoculants for sustainable agriculture and the environment. In:________.Agriculturally Important Microorganisms. Singapore: Springer Singapore, 2016. p. 15-46).

BELAN, L. L. et al. Occurrence of' Pseudomonas syringae pv. garcae'in coffee seeds. Australian Journal of Crop Science, Melbourne, v. 10, n. 7, p. 1015, July. 2016.

BENEDUZI, A. et al. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genetics and molecular biology, São Paulo, vol. 35, n. 4, Jan. 2012.

BRADFORD, M. M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, Valhalla, v. 72, n. 1-2, p. 248-254, May. 1976.

CAVALCANTI, L. S. et al. Indução de resistência em plantas contra patógenos e insetos. Piracicaba : Fealq, 2005. 263 pp.

CHANCE, B. ; MAEHLEY, A. C. Assay of catalases and peroxidases. Methods in Enzymology, Baltimore: Christine Ziegler, 1955. 764-775 p.

DURAN-FLORES, D.; HEIL, M. Damaged-self recognition in common bean (Phaseolus vulgaris) shows taxonomic specificity and triggers signaling via reactive oxygen species (ROS). Frontiers in plant science, Rockville Pike, v.5, p. 585, October. 2014

FERNANDES, L. H. M. et al. Inductors of resistance and their role in photosynthesis and antioxidant system activity of coffee seedlings. American Journal of Plant Sciences, Rockville Pike, v. 5, n. 25, p. 3710-3716, Dec, 2014

HARMAN, G. Myths and dogmas of biocontrol: changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Disease, Saint Paul, v. 84, n. 4, p. 377-393, Apr. 2000.

KADO, C. I.; Heskett, M. G. Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas and Xanthomonas. Phytopathology, Saint Paul, v. 60, n. 6, p. 969-976. Jan. 1970

KÖHL, J. et al. Effect of interrupted leaf wetness periods on suppression of sporulation of Botrytis allii and B. cinerea by antagonists on dead onion leaves. European Journal of Plant Pathology, Wageningen, v. 101, n. 6, p. 627-637, Nov. 1995.

KÖHL, J. et al. Stepwise screening of microorganisms for commercial use in biological control of plant-pathogenic fungi and bacteria. Biological Control, Wageningen, v. 57, n. 1, p. 1-12, Apr. 2011.

KÖHL, J.; SCHEER, C.; HOLB, I. J. Toward an integrated use of biological control by Cladosporium cladosporioides H39 in apple scab (Venturia inaequalis) management. Plant Disease, Saint Paul, v. 99, n. 4, p. 535-543, Apr, 2015.

LABORDE, M. C. F. Avaliação de fungos sapróbios na sobrevivência de Cercospora coffeicola. 2014. 48 p. Dissertação (Thesis in Agronomy/ Plant disease) - Universidade Federal de Lavras, Lavras, 2014.

L’HARIDON, F. et al. Permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity. PLoS Pathogens, San Francisco, v. 7, n. 7, p. 1–17, July. 2011.

LLORENS, E. et al. Induced resistance in sweet orange against Xanthomonas citri subsp. citri by hexanoic acid. Crop Protection, Amsterdam, v. 74, p. 77-84, April. 2015.

LORITO, M. et al. Translational research on Trichoderma: from ‘omics to the field. Annual review of phytopathology, Palo Alto, v. 48, p. 395-417, May. 2010.

LYON, G. D.; NEWTON, A. C. Do resistance elicitors offer new opportunities in integrated disease control strategies?. Plant Pathology, Edgmond, v. 46, n. 5, p. 636-641, Oct. 1997.

MARTINS, S. J. et al. Biological control of bacterial wilt of common bean by plant growth-promoting rhizobacteria. Biological Control, Wageningen, v. 66, n. 1, p. 65-71, July. 2013.

MEDEIROS, F. H. V. et al. Transcriptional profiling in cotton associated with Bacillus subtilis (UFLA 285) induced biotic-stress tolerance. Plant and Soil, Wageningen, v. 347, n. 1-11, p. 327-337, June. 2011.

MORI, T.; SAKURAI, M.; SAKUTA, M. Effects of conditioned medium on activities on PAL, CHS, DAHP synthase (DS-Co and DS-Mn) and anthocyanin production in suspension cultures of Fragaria ananassa. Plant Science, Chicago, v. 160, n. 2, p. 355-360, Dec. 2001

MOYA-ELIZONDO, E. A.; JACOBSEN, B. J. Integrated management of Fusarium crown rot of wheat using fungicide seed treatment, cultivar resistance, and induction of systemic acquired resistance (SAR). Biological Control, Wageningen, v. 92, p. 153-163, Jan. 2016.

NOJOSA, G. B. A.; RESENDE, M. L. V.; RESENDE, A. V. Uso de fosfitos e silicatos na indução de resistência. In: CAVALCANTI, L. S. Indução de resistência em plantas a patógenos e insetos. Piracicaba: Fundação de Estudos Agrários “Luiz de Queiroz”, 2005. p. 139-153.

OKON LEVY, N. et al. Induced resistance to foliar diseases by soil solarization and Trichoderma harzianum. Plant Pathology, Edgmond, v. 64, n. 2, p. 365-374, June. 2015.

PEIXOTO, P. H. P. et al. Aluminum effects on lipid peroxidation andon the activities of enzymes of oxidative metabolism in sorghum. Revista Brasileira de Fisiologia Vegetal, Campinas, v. 11, n. 3, p. 137-143, Aug. 1999.

RESENDE, M. L. V. et al. Produtos comerciais à base de bioindutores de resistência em plantas. Revisão Anual de Patologia de Plantas, Passo Fundo, v. 14, p. 361-380, Oct. 2006.

RODRIGUES, L. M. R. et al. Agressiveness of Pseudomonas syringae pv. garcae strains in Coffea arabica cvs. Mundo Novo and Borboun Amarelo. Abstracts, International Conference on Coffee Science, San José: Asic, p. 199, 2012.

RODRÍGUEZ, G. A. A. et al. Phialomyces macrosporus decreases anthracnose severity on coffee seedlings by competition for nutrients and induced resistance. Biological Control, Wageningen, v. 103, p. 119-128, Dec. 2016.

ROMANAZZI, G. et al. Integrated management of postharvest gray mold on fruit crops. Postharvest Biology and Technology, Potsdam, v. 113, p. 69-76. Mar. 2016.

SERA, G. H. et al. Associação de Pseudomonas syringae pv. garcae com algumas características agronômicas em cafeeiros F2 segregantes para o gene erecta. Ciência e Agrotecnologia, Lavras, v. 28, n. 5, p. 974-977, Oct. 2004.

SERA, T.; ALTEIA, M. Z.; PETEK, M. R. Melhoramento do cafeeiro: variedades melhoradas no Instituto Agronômico do Paraná (IAPAR). In:

ZAMBOLIM, L.O estado da arte de tecnologias na produção de café. Viçosa: UFV, 2002, p. 217-251.

SHANNER, G.; FINNEY, R. F. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in knox wheat. Phytopathology, Saint Paul, v. 67, n. 8, p. 1051-1056, Feb. 1977.

SIDHU, G. S.; WEBSTER, J. M. The use of amino acid fungal auxotrophs to study the predisposition phenomena in the root-knot: wilt fungus disease complex. Physiological Plant Pathology, London, v. 11, n. 11, p. 117-127, Sept, 1977.

SPADARO, D.; DROBY, S. Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science & Technology, London, v. 47, p. 39-49, Jan. 2016.

THALER, J. S.; OWEN, B.; HIGGINS, V. J. The role of the jasmonate response in plant susceptibility to diverse pathogens with a range of lifestyles. Plant physiology, Bronx, v. 135, n. 1, p. 530-538, May. 2004.

WALLING, L. L. Induced resistance: from the basic to the applied. Trends in plant science, Hampshire, v. 6, n. 10, p. 445-447, Oct. 2001.

WANG, X. et al. Biocontrol and plant growthpromoting activity of rhizobacteria from Chinese fields with contaminated soils. Microbial biotechnology, Barcelona, v. 8, n. 3, p. 404-418, Sept. 2015.

ZHANG, Q. et al. Streptomyces rochei A-1 induces resistance and defense-related responses against Botryosphaeria dothidea in apple fruit during storage. Postharvest Biology and Technology, Leuven, v. 115, p. 30-37, May. 2016.

ZOCCOLI, D. M.; TAKATSU, A.; UESUGI, C. H. Ocorrência de mancha aureolada em cafeeiros na região do Triângulo Mineiro e Alto Paranaíba. Bragantia, Campinas, v. 70, n. 4, p. 843-849, Apr. 2011.




DOI: http://dx.doi.org/10.25186/cs.v13i3.1438

Refbacks

  • There are currently no refbacks.