Sara Maria Chalfoun, Carla de Pádua Martins, Christiano Sousa Machado Matos, Alessandro Botelho Pereira, Vicentina Nazaré Silva


The coffee intercropping with fruit and wooden species of economic value has been presented as a viable alternative for coffee cultivation in order to mitigate adverse environmental conditions for coffee trees, among other factors. Adapting the crop management to the new conditions stablished by the system is fundamental to obtain success on intercropping. One of the most serious diseases for the crop is the rust caused by Hemileia vastatrix., which may have its severity increased in function of the microclimate conditions provided by the trees. In this sense, the disease behavior under different intercropping systems and consequent different need to adapt the control measures when compared to the cultivation in full sun should be investigated. The present study was conducted aimed to verify the impact of tree systems composed by three wooden species, Cedar (Acrocarpos fraxinifolius), African mahogany (Khaya ivorensis ), Teak (Tectona grandis ) and two species of fruit trees, avocado (Persea Americana) and macadamia (Macadamia integrifolia) planted in different spacing over the occurrence and evolution of rust.It was possible to observe that coffee rust began to progress in the coffee plants from the month of February reaching a peak in September in all the treatments. Differences were observed in the progress curves of the disease, especially in the species that presented larger canopy such as avocado. Further studies are suggested with the purpose of establishing the microclimatic changes provided by the cultivation of different wooden and fruit species in intercropping with coffee, according to the dynamics of the climate and their development.


Climate changes, shade-grown, sustainability.

Texto completo:

PDF (English)


AGUIAR-MENEZES, E. L. et al. Susceptibilidade de seis cultivares de café arábica às moscas-das-frutas (Diptera: Tephritoidea) em sistema orgânico com e sem arborização em Valença, RJ. Neotropical Entomology, Londrina, v.36, n.2, p.268-273, mar/abr. 2007.

AVELINO, J. et al. The coffee rust crises in Colombia and Central America (2008–2013): impacts, plausible causes and proposed solutions. Food Security, New York, v. 7, n.2, p. 303–321,Mar/Apr. 2015.

AVELINO, J. et al. Topography and crop management are key factors for the development of american leaf spot epidemics on coffee in Costa Rica.Phytopathology, Davis, v.97, n. 12, p. 1532–1542, Dec. 2007.

BEENHOUWER, M; AERTSB, R; HONNAY, O. A global meta-analysis of the biodiversity and ecosystem service benefits of coffee and cacao agroforestry. Agriculture, Ecosystems and Environment, Oxford, v.175, p. 1-7, Aug. 2013.

BOTELHO, C.E. et al. Estratégias para convivência com o déficit hídrico.Informe Agropecuário, Belo Horizonte, v.36, n.285, p.50-58, 2015.

CARVALHO. et al. Desempenho agronômico de cultivares de café resistentes à ferrugem no Estado de Minas Gerais, Brasil. Bragantia, Campinas, v. 71, n. 4, p.481-487, out/dez. 2012.

DA MATTA, F.M.; RENA, A.B. Ecofisiologia de cafezais sombreados e a pleno Sol. In: ZAMBOLIM, L. (Ed.). O estado da arte de tecnologias na produção de café. Viçosa: UFV, 2002. p.93‑135.

DAMATTA, F.M.; RODRÍGUEZ, N. Producción sostenible de cafetales en sistemas agroforestales en el neotrópico: una visión agronómica y eco-fisiológica. Agronomia Colombiana, Bogotá, v. 25, p. 113-123, 2007.

FERREIRA, D.F. Sisvar: a computer statistical analysis system. Ciência & Agrotecnologia, Lavras, v.35, n.6, p.1039–1042, Nov/Dez. 2011.

GOVINDAPPA, M; ELAVARASAN,K. Shade cum fruit yielding avocado under coffee ecosystem. International Letters of Natural Sciences, Suíça, v. 22, p. 61-66, 2014.

IDOL, T; HAGGAR, J.; COX, L. 2011. Ecosystem services from small holder forestry and agroforestry in the tropics.p..209-270. In: Integrating agriculture, conservation, and ecotourism: examples from the field. W. CAMPBELL.;Lopez, S.(eds.). New York: Springer.

LASCO, R. D. et al.Climate risk adaptation by small holder farmers: the roles of trees and agroforestry.Current Opinion in Environmental Sustainability, Laguna.v.6, p. 83–88, 2014.

LOPEZ-BRAVO, D. F., VIRGINIO-FILHO, E. D. M.;AVELINO, J. Shade is conducive to coffee rust as compared to full sun exposure under standardized fruit load conditions. Crop Protection,v. 38, p.21-29, 2012.

MANCUSO, M. A. C.;SORATTO, R.P.; PERDONÁ, M. J. Produção de café sombreado. Colloquium Agrariae, Presidente Prudente, v. 9, n.1,p. 31-44, jan/jun. 2013.

OVALLE-RIVERA, O. et al. Projected shifts in Coffea arabica suitability among major global producing regions due to climate change. PloS one, San Francisco/Cambridge, v.10, n. 4, Apr. 2015.

PEZZOPANE, J.R.M. et al. Condições microclimáticas em cultivo de café conilon a pleno sol e arborizado com nogueira macadâmia. Ciência Rural, Santa Maria, v. 40, n. 6, p. 1257-1263, jun. 2010.

SANCHEZ, E. et al. Shade has antagonistic effects on coffee berry borer. Proceedings of the 24th International Conference on Coffee Science (ASIC), November 11-16, 2012, 2013. San José, Costa Rica: ASIC.

SHANER, G.; FINNEY, R.E. The effects of nitrogen fertilization on the expression of slow mildwing in knox wheat. Phytopathology, Davis, v.67, p.1051-1055, Oct. 1977.

STAVER, C. et al. Designing pestsuppressive multistrata perennial crop systems: shade-grown coffee in Central America. Agroforestry Systems,v. 53, n. 2, p. 151-170, Oct. 2001.

TSCHARNTKE T, et al. Multifunctional shade-tree management in tropical agroforestry landscapes: A review. Journal of Applied Ecology, London, v. 48, n. 3, p. 619–629. May/June. 2011.

VALENTINI, L.S.P. et al. Temperatura do ar em Sistemas de Produção de café Arábica em monocultivo e arborizados com seringueira e coqueiro-anão na região de Mococa, SP. Bragantia, Campinas, v. 69, n. 4, p.1005-1010, out/dez. 2010.

WRIGLEY, G. Coffee. New York: Longman Scientific Technical and John Wiley & Sons. 1988. 639 p.



  • Não há apontamentos.