Morfofisiologia do crescimento vegetativo inicial de cafeeiros arabica submetidos a aplicação via foliar de Paclobutrazol

Lucialdo Oliveira d’Arêde, Sylvana Naomi Matsumoto, Jerffson Lucas Santos, Anselmo Eloy Silveira Viana, Paula Acássia Ramos Silva

Resumo


Objetivou-se com o presente estudo avaliar respostas morfológicas e fisiológicas durante o crescimento vegetativo inicial de plantas cv. Catuaí Vermelho IAC 144 submetidas à aplicação via foliar de quatro concentrações (250, 500, 750 e 1000 mg L-1) de pacloblutrazol (PBZ) e uma testemunha. O experimento foi conduzido em casa de vegetação com uma planta por vaso, em blocos ao acaso. Avaliaram-se o diâmetro do caule, número de folhas, massas fresca e seca da planta, índice SPAD, área foliar, potencial hídrico foliar e trocas gasosas. Os dados foram submetidos à análise de variância geral e da regressão. As características morfológicas foram afetadas pelo PBZ, ocorrendo redução do crescimento da parte aérea e elevação do peso de massa seca de raízes quando comparada à testemunha. Para os parâmetros fisiológicos o PBZ resultou em impactos positivos como a elevação do índice SPAD, do potencial hídrico foliar antemanhã, da fotossíntese líquida e da eficiência de carboxilação. A taxa de fotossíntese líquida potencial foi afetada pela eficiência da carboxilação, e a transpiração foi associada à maior disponibilidade hídrica da planta. O PBZ alterou a relação entre parte aérea e raiz, favorecendo o crescimento das raízes e otimizando as relações de trocas gasosas, devido à elevação do status hídrico da planta. Os efeitos do PBZ foram mais evidentes na morfologia do crescimento inicial dos cafeeiros quando comparados às alterações fisiológicas.

Palavras-chave


Coffea arabica; regulador de crescimento; triazol

Texto completo:

PDF

Referências


ABU-MURIEFAH, S. S. Effects of paclobutrazol on growth and physiological attributes of soybean (Glycine max) plants grown under water stress conditions. International Journal of Advanced Research in Biological Sciences, Coimbatore, v.2, n.7, p. 81-93, 2015.

ATKIN, O. K. et al. Phenotypic plasticity and growth temperature: understanding interespecific variability. Journal of Experimental Botany, v. 57, n. 2, p. 267-281, 2007. https://www.researchgate.net/profile/Beth_Loveys/publication/7400391_Phenotypic_plasticity_and_growth_temperature_Understanding_interspecific_variability/links/5729552a08ae2efbfdb7f358.pdf

BABU, M. et al. Transpiration and Photosynthesis as affected by triazoles in mulberry (Morus alba L.). Indian Journal of Advances in Chemical Science, [S.l.], v.2, n.4, 2014. http://www.ijacskros.com/artcles/IJACS-M109.pdf

CRIADO, M. V. et al. Cytokinin induced changes of nitrogen remobilization and chloroplast ultrastructure in wheat (Triticum aestivum). Journal of Plant Physiology, Jena, v. 166, n. 16, p. 1775-1785, 2009. https://www.researchgate.net/profile/Irma_N_Roberts/publication/26305405_Cytokinin-induced_changes_of_nitrogen_remobilization_and_chloroplast_ultrastructure_in_wheat_(Triticum_aestivum)/links/02e7e53397ad60f3a9000000.pdf

DaMATTA, F. M. Exploring drought tolerance in caffee: a physiological approach with some insights for plant breeding. Brazilian Journal Plant Physiology, Campos de Goytacazes, v. 16, p. 1-6, 2004. http://www.scielo.br/pdf/bjpp/v16n1/a01v16n1.pdf

DANIEL, G. et al. Effect of foliar application of mepiquat chloride and ethephon on floral bud induction and crop yield in robusta coffee. Journal of Coffee Research, Chickmagalur, v.36, n.1/2, p.60-63, 2008.

DIAS, P. C. et al. Morphological and physiological responses of two coffee progenies to soil water availability, Journal of Plant Physiology, [S.l.], v.164, p. 1639-1647, 2007. https://www.researchgate.net/profile/Fabio_Damatta2/publication/6512833_Morphological_and_physiological_responses_of_two_coffee_progenies_to_soil_water_availability/links/0912f505c956aa7325000000.pdf

FERNÁNDEZ, J.A. et al. Induction of drought tolerance by paclobutrazol and irrigation deficit in Phillyrea angustifolia during the nursery period. Scientia Horticulturae, [S.l.], v. 107, n.3, p. 277-283, 2006. https://www.researchgate.net/profile/Sebastian_Banon/publication/223732051_Induction_of_drought_tolerance_by_paclobutrazol_and_irrigation_deficit_in_Phillyrea_angustifolia_during_the_nursery_period/links/544e3da20cf26dda088e9bc7.pdf

FIGUEIRÔA, J. M.; BARBOSA, D. C. A.; SIMABUKURO, E. A. Crescimento de plantas jovens de Myracrodruon urundeuva Allemão (Anacardiaceae) sob diferentes regimes hídricos. Acta Botanica Brasilica, São Paulo, v.18, p.573-580, 2004. http://agris.fao.org/agris-search/search.do?recordID=XS2010100433

HARMATH, J. et al. Influence of some growth retardants on growth, transpiration rate and CO2 fixation of Caryopteris incana ‘Heavenly Blue’. Folia Oecologica, Zvolen, v. 41, n. 1, p. 24-33, 2014. http://www.savzv.sk/domain/b6/files/foc/foe_41_no1.pdf#page=24

HONORATO JÚNIOR, J. et al. Photosynthetic and antioxidative alterations in coffee leaves caused by epoxiconazole and pyraclostrobin sprays and Hemileia vastatrix infection. Pesticide Biochemistry and Physiology, [S.l.], v. 123, p.31-39, 2015. http://s3.amazonaws.com/academia.edu.documents/39003003/1-s2.0-S0048357515000280-main.pdf?AWSAccessKeyId=AKIAJ56TQJRTWSMTNPEA&Expires=14

JALEEL, C. A. et al. Water deficit stress effects on reactive oxygen metabolism in Catharanthus roseus; impacts on ajmalicine accumulation. Colloids and Surfaces B: Biointerfaces, Amsterdam, v. 62, n. 1, p. 105-111, 2008.

JESUS, R. B. Os recursos naturais e sua exploração na formação territorial do município de Vitória da Conquista-BA. Enciclopédia Biosfera, Goiânia, v.6, n.9, p. 1-13, 2010. http://www.conhecer.org.br/enciclop/2010/os%20recursos.pdf

KISHOREKUMAR, A. et al. Comparative effects of different triazole compounds on growth, photosynthetic pigments and carbohydrate metabolism of Solenostemon rotundifolius. Colloids and Surfaces B: Biointerfaces, Amsterdam, v.6, n.2, p. 207-212, 2007.

LATIMER, J. G. Drought, paclobutrazol, abscisic acid, and gibberellic acid as alternatives to daminozide in tomato transplant production. Journal of the American Society for Horticultural Science, [S.l.], v.117, n.2, p.243-247, 1992. http://journal.ashspublications.org/content/117/2/243.full.pdf

LOLAEI, A. et al. Role of paclobutrazol on vegetative and sexual growth of plants. International Journal of Agricultural Crop Science, [S.l.], v.5, n. 9, p. 958-961, 2013. http://pakacademicsearch.com/pdf-files/agr/70/958-961%20vol%205,issue%209,%202013.pdf

MARSHALL, J. G.; DUMBROFF, E. B. Turgor regulation via cell wall adjustment in white spruce. Plant Physiology, [S.l.], v. 119, p. 313-319, 1999. http://www.plantphysiol.org/content/119/1/313.full

MAURI, R. Interação entre parâmetros hidráulicos e fotossintéticos em Coffea spp. 2015. 32f. Dissertação (mestrado). Universidade Federal de Viçosa, Viçosa. http://locus.ufv.br/bitstream/handle/123456789/6775/texto%20completo.pdf?sequence=1&isAllowed=y

MATSOUKIS, A.; GASPARATOS, D.; CHRONOPOULOU-SERELIN, A. Environmental conditions and drenched-applied paclobutrazol effects on lantana

specific leaf area and N, P, K, and Mg content. Chilean Journal of Agricultural Research, v. 74, n.1, p. 117-122, 2014. http://www.scielo.cl/scielo.php?pid=S0718-58392014000100018&script=sci_arttext

MOHAN, R. et al. Exploring possibilities of induction of water stress tolerance in mulberry in rainfed condition by application of paclobutrazol. Journal of Global Biosciences, Washim, v.4, n.9, p. 3301-3310, 2015. http://www.mutagens.co.in/jgb/vol.04/9/040903.pdf

MULLINS, M. G.; BOUQUET, A.; WILLIAMS, L. E. Biology of grapevine. Cambridge: Cambridge University Press, 1992. 239 p.

NARDINI, A.; ÕUNAPUU-PIKAS, E.; SAVI, T. When smaller is better: leaf hydraulic conductance and drought vulnerability correlate to leaf size and venation density across four Coffea arabica genotypes. Functional Plant Biology, Layton South, v.41, n.9, p.972-982, 2014.

NAVARRO, A. et al. The influence of mycorrhizal inoculation and paclobutrazol on water and nutritional status of Arbutus unedo L. Environmental and Experimental Botany, [S.l.], v. 66, n. 3, p. 362-371, 2009. https://www.researchgate.net/profile/A_Navarro/publication/223913441_The_influence_of_mycorrhizal_inoculation_and_paclobutrazol_on_water_and_nutritional_status_of_Arbutus_unedo_L._Environ_Exp_Bot/links/0f31752f3ada30c872000000.pdf

OCHOA, J. et al. Distribution in plant, substrate and leachate of paclobutrazol following application to containerized Nerium oleander L. seedlings. Spanish Journal of Agricultural Research, Madrid, v 73, n.3, p. 621-628, 2009. http://repositorio.upct.es/bitstream/handle/10317/1424/dps.pdf?sequence=1&isAllowed=y

OLSON, M. E.; ROSELL, J. A. Vessel diameter-stem diameter scaling across woody angiosperms and the ecological causes of xylem vessel diameter variation. New Phytologist, New Jersey, v.197, n.4, p.1204-1213, 2013. http://onlinelibrary.wiley.com/doi/10.1111/nph.12097/full

POMPELLI, M. F. et al. Leaf anatomy, ultrastructure and plasticity of Coffea arabica L. in response to light and nitrogen. Biotemas, Florianópolis, v.25, n.4, p. 13-28, 2012. https://periodicos.ufsc.br/index.php/biotemas/article/viewFile/2175-7925.2012v25n4p13/23206

PRICINOTTO, L. F.; ZUCARELI, C. Paclobutrazol no crescimento e desempenho produtivo da soja sob diferentes densidades de semeadura. Revista Caatinga, Mossoró, v. 27, n. 4, p. 65-74, 2014. http://200.137.6.4/revistas/index.php/sistema/article/download/3026/pdf_172

RADEMACHER, W. Plant growth regulators: backgrounds and uses in plant production. Journal of Plant Growth Regulation, [S.l.], v. 34, p. 845-872, 2015.

ROSELI, A. N. M.; YING, T. F.; RAMLAN, N. F. Morphological and physiological response to Syzygium myrtifolium Walp. to paclobutrazol. Sains Malays, [S.l.], v. 41, n. 10, p. 1187-1192, 2012. http://www.ukm.my/jsm/pdf_files/SM-PDF-41-10-2012/02%20Ahmad%20Nazarudin.pdf

SAMPAIO, D. B.; DOS SANTOS, V. B.; ARAÚJO, A. S. F. Rates of paclobutrazol on soil microbial biomass. Semina: Ciências Agrárias, Londrina, v.3, p.1349-1353, 2010. http://www.redalyc.org/pdf/4457/445744099027.pdf

SCHOLANDER, P. F. et al. Hydrostatic pressure and osmotic potential in leaves of mangroves and some other plants. Proceedings of the National Academy of Sciences of the United States of America, Washington, v. 52, n. 1, p. 119, 1964. http://www.pnas.org/content/52/1/119.short

SHANMUGAPRIYA, A. K.; SIVAKUMAR, T.; PANNEERSELVAM, R. Difeconazole and tricyclazole induced changes in photosynthetic pigments of Lycopersicum esculentum L. International Journal of Agriculture and Food Science, Delhi, v. 3, n.2, p. 72-75, 2013. http://urpjournals.com/tocjnls/7_13v3i2_9.pdf

SRIVASTAVA et al. Plant biorregulators for sustainable agriculture: integrating redox signaling as a possible unifying mechanism. Advances in Agronomy, Newark, v. 137, P. 237-278, 2016.

TEKALIGN, T. Growth, photosynthetic efficiency, rate of transpiration, lodging, and grain yield of tef (Eragrostis tef (Zucc.) Trotter) as influenced by stage and rate of paclobutrazol application. East African Journal of Science, [S.l.], v.1, n.1, p.35-44, 2007. http://www.haramayajournals.org/index.php/ej/article/view/19/14

WANDERLEY, C. S.; REZENDE, R.; ANDRADE, C. A. B. Efeito de paclobutrazol como regulador de crescimento e produção de flores de girassol em cultivo hidropônico. Ciência e Agrotecnologia, Lavras, v. 31, n. 6, p. 1672-1678, 2007. http://www.scielo.br/pdf/cagro/v31n6/a11v31n6

ZHU, L. H.; VAN DE PEPPEL, A.; LI, X. Y.; WELANDER, M. Changes of leaf water potential and endogenous cytokinins in young apple trees treated with or without paclobutrazol under drought conditions. Scientia Horticulturae, [S.l.], v.99, n.2, p.133-141, 2004.




DOI: http://dx.doi.org/10.25186/cs.v12i4.1311

Apontamentos

  • Não há apontamentos.