Impacts of water deficit in ecophysiological and spectral responses of coffee intercropped with woody species

Helbert Rezende de Oliveira Silveira, Meline Oliveira Santos, Vânia Aparecida Silva, Regis Pereira Venturin, Margarete Marin Lordelo Volpato, Mayara Fontes Dantas, Gladyston Rodrigues Carvalho, Tesfahun Alemu Setotaw, Filipe Chaves Moreira, João Paulo Rodrigues Alves Delfino Barbosa, Mário Lúcio Vilela de Resende

Abstract


The aim of this study was to evaluate the effect of water stress in spectral and ecophysiological responses of coffee trees intercropped with woody species under water deficit. The “Catuaí Vermelho 99” was planted in monoculture and associated with the tree mahogany, teak and acrocarpo distributed in two spacings (9 x 13.6 and 18 x 13.6 m) line of coffee. Evaluations of growth of tree and coffee were performed 25 months after planting. The spectral and ecophysiological evaluations in coffee were held in four moments (June, August, September and December 2014). The acrocarpo presented greater height, crown and stem diameter. There were no differences between the growth of intercropping and monoculture coffee. The differences in water potential, spectral indices and ecophysiological were more evident in the early stages (August) and drought recovery (December). In August, the coffee monoculture showed higher Ψpd than intercropped coffee and was dicriminated by having positive scores and higher values of spectral indices NDVI, WBI, ARI1, CRI1, SIPI and FRI. On the other hand, in December, the largest Ψpd values were found in monoculture, intercropping with teak in both spacing and acrocarpo in greater spacing. However, this time, the highlight was the intercropping coffee with teak in wider spacing, which showed positive scores and higher values of US, potential photochemical efficiency of PSII and indexes (ARI1, CRI1 and FRI). The intercropping with teak in greater spacing has a positive impact on the spectral and ecophysiological coffee’s responses after the drought.

Keywords


Coffea arabica; Khaya ivorensi; Tectona grandis; Acrocarpus fraxinifolius

References


COMPANHIA NACIONAL DE ABASTECIMENTO. Quarto acompanhamento: dezembro 2014. Disponível em : http://www.conab.gov.br/OlalaCMS/uploads/arquivos/14_12_22_09_53_55_b oletim_dezembro_2014.pdf>. Acesso em: 16 mar. 2015.

FERREIRA, D. F. Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, Lavras, v. 35, n. 6, p. 1039-1042, nov./dez. 2011.

http://www.scielo.br/scielo.php?pid=S1413-70542011000600001&script=sci_arttext

GAMON, J. A.; PEÑUELAS, J.; FIELD, C. B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, New York, v. 41, n. 1, p. 35– 44, July 1992. http://www.sciencedirect.com/science/article/pii/003442579290059S

GITELSON, A. A. et al. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochemistry and Photobiology, Hoboken, v. 75, n. 3, p. 272–281, March 2002.

http://onlinelibrary.wiley.com/doi/10.1562/0031-8655(2002)0750272ACCIPL2.0.CO2/pdf

GITELSON, A. A.; MERZLYAK, M. N.; CHIVKUNOVA, O. B. Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochemistry and Photobiology, Hoboken, v.74, n. 1, p. 38–45, July 2001. http://www.bioone.org/doi/pdf/10.1562/0031-8655%282001%29074%3C0038%3AOPANEO%3E2.0.CO%3B2

GOMES,I. A. C. et al. Alterações morfofisiológicas em folhas de Coffea arabica L. cv. “Oeiras” sob influência do sombreamento por Acacia mangium Willd. Ciência Rural, Santa Maria, v.38, n.1, p. 109-105, jan./ fev. 2008. http://www.scielo.br/pdf/cr/v38n1/a18v38n1.pdf

GUIMARÃES, G. P. et al. Stocks and oxidizable fractions of soil organic matter under organic coffee agroforestry systems. Coffee Science, Lavras, v. 9, n. 1, p. 132-141, jan./mar. 2014.

http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/564/pdf_80

HENRIQUES, Fernando S. Leaf chlorophyll fluorescence: background and fundamentals for plant biologists. The Botanical Review, New York, v. 75, n. 3, p. 249-270, Sept. 2009. http://link.springer.com/article/10.1007%2Fs12229-009-9035-y

HUSSON, F. et al. FactoMineR: Multivariate Exploratory Data Analysis and Data Mining with R. R package version 1.28. 2014. Disponível em: http://CRAN.R-project.org/package=FactoMineR

LI, G. L. et al. Response of chlorophyll fluorescence parameters to drought stress in sugar beet seedlings. Russian Journal of Plant Physiology, New York, v. 60, n. 3, p. 337-342, May 2013. http://link.springer.com/article/10.1134%2FS1021443713020155

MACEDO, R. L. G. et al. Estabelecimento de Tectona grandis L.f. (Teca) em sistemas agroflorestais com Coffea arabica L. em Lavras-MG. Agrossilvicultura, Viçosa, v. 1, n. 1, p. 71-80, 2004. http://www.sbag.org.br/07-SBAG-v1-n1-2004-71-80.pdf

MANCUSO, M. A. C.; SORATTO, R. P.; PERDONÁ, M. J. Produção de café sombreado. Colloquium Agrariae, Presidente Prudente, v. 9, n.1, p. 31-44, jan-jun. 2013. http://revistas.unoeste.br/revistas/ojs/index.php/ca/article/viewFile/592/979

MERZLYAK, M. N. et al. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiologia Plantarum, Hoboken, v. 106, n. 1, p. 135– 141, May, 1999.

http://onlinelibrary.wiley.com/doi/10.1034/j.1399-3054.1999.106119.x/pdf

MERZLYAK, M. N. et al. Apple flavonols during fruit adaptation to solar radiation: spectral features and technique for non-destructive assessment. Journal of Plant Physiology, Jena, v. 162, n. 2, p. 151-160, Feb. 2005.

http://www.calmit.unl.edu/people/agitelson2/pdf/jpp-2005-flavonoids.pdf

MURCHIE, E. H.; LAWSON, T. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany, Oxford, v. 64, n. 13, p. 3983-3998, Oct. 2013.

http://jxb.oxfordjournals.org/content/early/2013/08/02/jxb.ert208.full.pdf

NAGY, A.; TAMÁS, J. Noninvasive water stress assessment methods in orchards. Communications in Soil Science and Plant Analysis, Philadelphia, v. 44, p. 366–376, 2013. http://www.tandfonline.com/doi/abs/10.1080/00103624.2013.742308?journalCode=lcss20

NASCIMENTO, E. A. et al. Alterações morfofisiológicas em folhas de cafeeiro (Coffea arabica L.) consorciado com seringueira (Hevea brasiliensis Muell. Arg.). Ciência Rural, Santa Maria, v. 36, n. 3, p. 852-857, maio/jun. 2006.

http://www.scielo.br/pdf/cr/v36n3/a19v36n3.pdf

PEÑUELAS, J.; BARET, F.; FILELLA, I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica, Dordrecht, v. 31, p. 221– 230, 1995.

http://www.creaf.uab.es/Global-Ecology/Pdfs_UEG/Photosyn1995.pdf

PEÑUELAS, J. et al. Estimation of plant water concentration by the reflectance water index WI (R900/R970). International Journal of Remote Sensing, Abingdon, v. 18, n. 13, p. 2869–2875, 1997.

http://www.creaf.uab.cat/Global-Ecology/Pdfs_UEG/penuelasetalIJRS-wi-97.pdf

PERDONÁ, M.J. et al. Crescimento e produtividade de nogueira‑macadâmia em consórcio com cafeeiro arábica irrigado. Pesquisa Agropecuária Brasileira, Brasília, v.47, n.11, p.1613-1620, nov. 2012. http://seer.sct.embrapa.br/index.php/pab/article/view/12759/8250

PEZZOPANE, J. R. M. et al. Alterações microclimáticas em cultivo de café conilon arborizado com coqueiro-anão-verde. Revista Ciência Agronômica, Campinas, v. 42, n. 4, p. 865-871, out./dez. 2011. http://www.scielo.br/pdf/rca/v42n4/a07v42n4.pdf

______. Condições microclimáticas em cultivo de café conilon a pleno sol e arborizado com nogueira macadâmia. Ciência Rural, Santa Maria, v.40, n.6, p. 1257-1263, jun, 2010. http://www.scielo.br/pdf/cr/v40n6/a624cr2703.pdf

POMPELLI, M. F. et al. Photosynthesis and photoprotection in coffee leaves is affected by nitrogen and light availabilities in winter conditions. Journal of Plant Physiology, Jena, v. 167, n. 13, p. 1052–1060, Sept. 2010.

https://www.ufpe.br/lev/images/pdf/pdfsmarcelo/marcelo10.pdf

RICCI, M. S. F.; COSTA, J. R.; OLIVEIRA, N. G. Utilização de componentes principais para analisar o comportamento do cafeeiro a pleno sol e sombreado. Coffee Science, Lavras, v. 6, n. 1, p. 44-54, jan./abr. 2011.

http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/380/pdf

R CORE TEAM . R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2014. Disponível em: URL http://www.R-project.org/.

ROUSE, J. W. et al. Monitoring vegetation systems in the Great Plains with ERTS. In: Proceedings, Third Earth Resources Technology Satellite-1 Symposium 1974. Greenbelt: NASA SP-351. pp. 301– 317, 1974.

SILES, P.; HARMAND, J. M.; VAAST, P. Effects of Inga densiflora on the microclimate of coffee (Coffea arabica L.) and overall biomass under optimal growing conditions in Costa Rica. Agroforestry Systems, Dordrecht, v. 78, n. 3, p. 269-286, March 2010. http://link.springer.com/article/10.1007%2Fs10457-009-9241-y

VAN GAALEN, K. E.; FLANAGAN, L B.; PEDDLE, D. R. Photosynthesis, chlorophyll fluorescence and spectral reflectance in Sphagnum moss at varying water contents. Oecologia, New York, v. 153, n. 1, p. 19-28, Aug. 2007.

http://link.springer.com/article/10.1007%2Fs00442-007-0718-y

VENTURIN, N; et al. Desempenho silvicultural de Acrocarpus fraxinifolius Wight em função de diferentes espaçamentos e idades. Cerne, Lavras, v. 20, n. 4, p. 629-636, Oct./Dec. 2014. http://www.scielo.br/pdf/cerne/v20n4/v20n4a17.pdf




DOI: http://dx.doi.org/10.25186/cs.v11i3.1085

Refbacks

  • There are currently no refbacks.